Concepts

Edit This Page

Pod Security Policies

FEATURE STATE: Kubernetes v1.12 beta
This feature is currently in a beta state, meaning:

  • The version names contain beta (e.g. v2beta3).
  • Code is well tested. Enabling the feature is considered safe. Enabled by default.
  • Support for the overall feature will not be dropped, though details may change.
  • The schema and/or semantics of objects may change in incompatible ways in a subsequent beta or stable release. When this happens, we will provide instructions for migrating to the next version. This may require deleting, editing, and re-creating API objects. The editing process may require some thought. This may require downtime for applications that rely on the feature.
  • Recommended for only non-business-critical uses because of potential for incompatible changes in subsequent releases. If you have multiple clusters that can be upgraded independently, you may be able to relax this restriction.
  • Please do try our beta features and give feedback on them! After they exit beta, it may not be practical for us to make more changes.

Pod Security Policies enable fine-grained authorization of pod creation and updates.

What is a Pod Security Policy?

A Pod Security Policy is a cluster-level resource that controls security sensitive aspects of the pod specification. The PodSecurityPolicy objects define a set of conditions that a pod must run with in order to be accepted into the system, as well as defaults for the related fields. They allow an administrator to control the following:

Control Aspect Field Names
Running of privileged containers privileged
Usage of host namespaces hostPID, hostIPC
Usage of host networking and ports hostNetwork, hostPorts
Usage of volume types volumes
Usage of the host filesystem allowedHostPaths
White list of Flexvolume drivers allowedFlexVolumes
Allocating an FSGroup that owns the pod’s volumes fsGroup
Requiring the use of a read only root file system readOnlyRootFilesystem
The user and group IDs of the container runAsUser, supplementalGroups
Restricting escalation to root privileges allowPrivilegeEscalation, defaultAllowPrivilegeEscalation
Linux capabilities defaultAddCapabilities, requiredDropCapabilities, allowedCapabilities
The SELinux context of the container seLinux
The Allowed Proc Mount types for the container allowedProcMountTypes
The AppArmor profile used by containers annotations
The seccomp profile used by containers annotations
The sysctl profile used by containers annotations

Enabling Pod Security Policies

Pod security policy control is implemented as an optional (but recommended) admission controller. PodSecurityPolicies are enforced by enabling the admission controller, but doing so without authorizing any policies will prevent any pods from being created in the cluster.

Since the pod security policy API (policy/v1beta1/podsecuritypolicy) is enabled independently of the admission controller, for existing clusters it is recommended that policies are added and authorized before enabling the admission controller.

Authorizing Policies

When a PodSecurityPolicy resource is created, it does nothing. In order to use it, the requesting user or target pod’s service account must be authorized to use the policy, by allowing the use verb on the policy.

Most Kubernetes pods are not created directly by users. Instead, they are typically created indirectly as part of a Deployment, ReplicaSet, or other templated controller via the controller manager. Granting the controller access to the policy would grant access for all pods created by that the controller, so the preferred method for authorizing policies is to grant access to the pod’s service account (see example).

Via RBAC

RBAC is a standard Kubernetes authorization mode, and can easily be used to authorize use of policies.

First, a Role or ClusterRole needs to grant access to use the desired policies. The rules to grant access look like this:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: <role name>
rules:
- apiGroups: ['policy']
  resources: ['podsecuritypolicies']
  verbs:     ['use']
  resourceNames:
  - <list of policies to authorize>

Then the (Cluster)Role is bound to the authorized user(s):

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: <binding name>
roleRef:
  kind: ClusterRole
  name: <role name>
  apiGroup: rbac.authorization.k8s.io
subjects:
# Authorize specific service accounts:
- kind: ServiceAccount
  name: <authorized service account name>
  namespace: <authorized pod namespace>
# Authorize specific users (not recommended):
- kind: User
  apiGroup: rbac.authorization.k8s.io
  name: <authorized user name>

If a RoleBinding (not a ClusterRoleBinding) is used, it will only grant usage for pods being run in the same namespace as the binding. This can be paired with system groups to grant access to all pods run in the namespace:

# Authorize all service accounts in a namespace:
- kind: Group
  apiGroup: rbac.authorization.k8s.io
  name: system:serviceaccounts
# Or equivalently, all authenticated users in a namespace:
- kind: Group
  apiGroup: rbac.authorization.k8s.io
  name: system:authenticated

For more examples of RBAC bindings, see Role Binding Examples. For a complete example of authorizing a PodSecurityPolicy, see below.

Troubleshooting

Policy Order

In addition to restricting pod creation and update, pod security policies can also be used to provide default values for many of the fields that it controls. When multiple policies are available, the pod security policy controller selects policies in the following order:

  1. If any policies successfully validate the pod without altering it, they are used.
  2. If it is a pod creation request, then the first valid policy in alphabetical order is used.
  3. Otherwise, if it is a pod update request, an error is returned, because pod mutations are disallowed during update operations.

Example

This example assumes you have a running cluster with the PodSecurityPolicy admission controller enabled and you have cluster admin privileges.

Set up

Set up a namespace and a service account to act as for this example. We’ll use this service account to mock a non-admin user.

kubectl create namespace psp-example
kubectl create serviceaccount -n psp-example fake-user
kubectl create rolebinding -n psp-example fake-editor --clusterrole=edit --serviceaccount=psp-example:fake-user

To make it clear which user we’re acting as and save some typing, create 2 aliases:

alias kubectl-admin='kubectl -n psp-example'
alias kubectl-user='kubectl --as=system:serviceaccount:psp-example:fake-user -n psp-example'

Create a policy and a pod

Define the example PodSecurityPolicy object in a file. This is a policy that simply prevents the creation of privileged pods.

policy/example-psp.yaml
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: example
spec:
  privileged: false  # Don't allow privileged pods!
  # The rest fills in some required fields.
  seLinux:
    rule: RunAsAny
  supplementalGroups:
    rule: RunAsAny
  runAsUser:
    rule: RunAsAny
  fsGroup:
    rule: RunAsAny
  volumes:
  - '*'

And create it with kubectl:

kubectl-admin create -f example-psp.yaml

Now, as the unprivileged user, try to create a simple pod:

kubectl-user create -f- <<EOF
apiVersion: v1
kind: Pod
metadata:
  name:      pause
spec:
  containers:
    - name:  pause
      image: k8s.gcr.io/pause
EOF
Error from server (Forbidden): error when creating "STDIN": pods "pause" is forbidden: unable to validate against any pod security policy: []

What happened? Although the PodSecurityPolicy was created, neither the pod’s service account nor fake-user have permission to use the new policy:

kubectl-user auth can-i use podsecuritypolicy/example
no

Create the rolebinding to grant fake-user the use verb on the example policy:

Note: This is not the recommended way! See the next section for the preferred approach.
kubectl-admin create role psp:unprivileged \
    --verb=use \
    --resource=podsecuritypolicy \
    --resource-name=example
role "psp:unprivileged" created

kubectl-admin create rolebinding fake-user:psp:unprivileged \
    --role=psp:unprivileged \
    --serviceaccount=psp-example:fake-user
rolebinding "fake-user:psp:unprivileged" created

kubectl-user auth can-i use podsecuritypolicy/example
yes

Now retry creating the pod:

kubectl-user create -f- <<EOF
apiVersion: v1
kind: Pod
metadata:
  name:      pause
spec:
  containers:
    - name:  pause
      image: k8s.gcr.io/pause
EOF
pod "pause" created

It works as expected! But any attempts to create a privileged pod should still be denied:

kubectl-user create -f- <<EOF
apiVersion: v1
kind: Pod
metadata:
  name:      privileged
spec:
  containers:
    - name:  pause
      image: k8s.gcr.io/pause
      securityContext:
        privileged: true
EOF
Error from server (Forbidden): error when creating "STDIN": pods "privileged" is forbidden: unable to validate against any pod security policy: [spec.containers[0].securityContext.privileged: Invalid value: true: Privileged containers are not allowed]

Delete the pod before moving on:

kubectl-user delete pod pause

Run another pod

Let’s try that again, slightly differently:

kubectl-user run pause --image=k8s.gcr.io/pause
deployment "pause" created

kubectl-user get pods
No resources found.

kubectl-user get events | head -n 2
LASTSEEN   FIRSTSEEN   COUNT     NAME              KIND         SUBOBJECT                TYPE      REASON                  SOURCE                                  MESSAGE
1m         2m          15        pause-7774d79b5   ReplicaSet                            Warning   FailedCreate            replicaset-controller                   Error creating: pods "pause-7774d79b5-" is forbidden: no providers available to validate pod request

What happened? We already bound the psp:unprivileged role for our fake-user, why are we getting the error Error creating: pods "pause-7774d79b5-" is forbidden: no providers available to validate pod request? The answer lies in the source - replicaset-controller. Fake-user successfully created the deployment (which successfully created a replicaset), but when the replicaset went to create the pod it was not authorized to use the example podsecuritypolicy.

In order to fix this, bind the psp:unprivileged role to the pod’s service account instead. In this case (since we didn’t specify it) the service account is default:

kubectl-admin create rolebinding default:psp:unprivileged \
    --role=psp:unprivileged \
    --serviceaccount=psp-example:default
rolebinding "default:psp:unprivileged" created

Now if you give it a minute to retry, the replicaset-controller should eventually succeed in creating the pod:

kubectl-user get pods --watch
NAME                    READY     STATUS    RESTARTS   AGE
pause-7774d79b5-qrgcb   0/1       Pending   0         1s
pause-7774d79b5-qrgcb   0/1       Pending   0         1s
pause-7774d79b5-qrgcb   0/1       ContainerCreating   0         1s
pause-7774d79b5-qrgcb   1/1       Running   0         2s
^C

Clean up

Delete the namespace to clean up most of the example resources:

kubectl-admin delete ns psp-example
namespace "psp-example" deleted

Note that PodSecurityPolicy resources are not namespaced, and must be cleaned up separately:

kubectl-admin delete psp example
podsecuritypolicy "example" deleted

Example Policies

This is the least restricted policy you can create, equivalent to not using the pod security policy admission controller:

policy/privileged-psp.yaml
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: privileged
  annotations:
    seccomp.security.alpha.kubernetes.io/allowedProfileNames: '*'
spec:
  privileged: true
  allowPrivilegeEscalation: true
  allowedCapabilities:
  - '*'
  volumes:
  - '*'
  hostNetwork: true
  hostPorts:
  - min: 0
    max: 65535
  hostIPC: true
  hostPID: true
  runAsUser:
    rule: 'RunAsAny'
  seLinux:
    rule: 'RunAsAny'
  supplementalGroups:
    rule: 'RunAsAny'
  fsGroup:
    rule: 'RunAsAny'

This is an example of a restrictive policy that requires users to run as an unprivileged user, blocks possible escalations to root, and requires use of several security mechanisms.

policy/restricted-psp.yaml
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: restricted
  annotations:
    seccomp.security.alpha.kubernetes.io/allowedProfileNames: 'docker/default'
    apparmor.security.beta.kubernetes.io/allowedProfileNames: 'runtime/default'
    seccomp.security.alpha.kubernetes.io/defaultProfileName:  'docker/default'
    apparmor.security.beta.kubernetes.io/defaultProfileName:  'runtime/default'
spec:
  privileged: false
  # Required to prevent escalations to root.
  allowPrivilegeEscalation: false
  # This is redundant with non-root + disallow privilege escalation,
  # but we can provide it for defense in depth.
  requiredDropCapabilities:
    - ALL
  # Allow core volume types.
  volumes:
    - 'configMap'
    - 'emptyDir'
    - 'projected'
    - 'secret'
    - 'downwardAPI'
    # Assume that persistentVolumes set up by the cluster admin are safe to use.
    - 'persistentVolumeClaim'
  hostNetwork: false
  hostIPC: false
  hostPID: false
  runAsUser:
    # Require the container to run without root privileges.
    rule: 'MustRunAsNonRoot'
  seLinux:
    # This policy assumes the nodes are using AppArmor rather than SELinux.
    rule: 'RunAsAny'
  supplementalGroups:
    rule: 'MustRunAs'
    ranges:
      # Forbid adding the root group.
      - min: 1
        max: 65535
  fsGroup:
    rule: 'MustRunAs'
    ranges:
      # Forbid adding the root group.
      - min: 1
        max: 65535
  readOnlyRootFilesystem: false

Policy Reference

Privileged

Privileged - determines if any container in a pod can enable privileged mode. By default a container is not allowed to access any devices on the host, but a “privileged” container is given access to all devices on the host. This allows the container nearly all the same access as processes running on the host. This is useful for containers that want to use linux capabilities like manipulating the network stack and accessing devices.

Host namespaces

HostPID - Controls whether the pod containers can share the host process ID namespace. Note that when paired with ptrace this can be used to escalate privileges outside of the container (ptrace is forbidden by default).

HostIPC - Controls whether the pod containers can share the host IPC namespace.

HostNetwork - Controls whether the pod may use the node network namespace. Doing so gives the pod access to the loopback device, services listening on localhost, and could be used to snoop on network activity of other pods on the same node.

HostPorts - Provides a whitelist of ranges of allowable ports in the host network namespace. Defined as a list of HostPortRange, with min(inclusive) and max(inclusive). Defaults to no allowed host ports.

AllowedHostPaths - See Volumes and file systems.

Volumes and file systems

Volumes - Provides a whitelist of allowed volume types. The allowable values correspond to the volume sources that are defined when creating a volume. For the complete list of volume types, see Types of Volumes. Additionally, * may be used to allow all volume types.

The recommended minimum set of allowed volumes for new PSPs are:

FSGroup - Controls the supplemental group applied to some volumes.

AllowedHostPaths - This specifies a whitelist of host paths that are allowed to be used by hostPath volumes. An empty list means there is no restriction on host paths used. This is defined as a list of objects with a single pathPrefix field, which allows hostPath volumes to mount a path that begins with an allowed prefix, and a readOnly field indicating it must be mounted read-only. For example:

allowedHostPaths:
  # This allows "/foo", "/foo/", "/foo/bar" etc., but
  # disallows "/fool", "/etc/foo" etc.
  # "/foo/../" is never valid.
  - pathPrefix: "/foo"
    readOnly: true # only allow read-only mounts
Warning:

There are many ways a container with unrestricted access to the host filesystem can escalate privileges, including reading data from other containers, and abusing the credentials of system services, such as Kubelet.

Writeable hostPath directory volumes allow containers to write to the filesystem in ways that let them traverse the host filesystem outside the pathPrefix. readOnly: true, available in Kubernetes 1.11+, must be used on all allowedHostPaths to effectively limit access to the specified pathPrefix.

ReadOnlyRootFilesystem - Requires that containers must run with a read-only root filesystem (i.e. no writable layer).

Flexvolume drivers

This specifies a whitelist of Flexvolume drivers that are allowed to be used by flexvolume. An empty list or nil means there is no restriction on the drivers. Please make sure volumes field contains the flexVolume volume type; no Flexvolume driver is allowed otherwise.

For example:

apiVersion: extensions/v1beta1
kind: PodSecurityPolicy
metadata:
  name: allow-flex-volumes
spec:
  # ... other spec fields
  volumes:
    - flexVolume
  allowedFlexVolumes:
    - driver: example/lvm
    - driver: example/cifs

Users and groups

RunAsUser - Controls which user ID the containers are run with.

RunAsGroup - Controls which primary group ID the containers are run with.

SupplementalGroups - Controls which group IDs containers add.

Privilege Escalation

These options control the allowPrivilegeEscalation container option. This bool directly controls whether the no_new_privs flag gets set on the container process. This flag will prevent setuid binaries from changing the effective user ID, and prevent files from enabling extra capabilities (e.g. it will prevent the use of the ping tool). This behavior is required to effectively enforce MustRunAsNonRoot.

AllowPrivilegeEscalation - Gates whether or not a user is allowed to set the security context of a container to allowPrivilegeEscalation=true. This defaults to allowed so as to not break setuid binaries. Setting it to false ensures that no child process of a container can gain more privileges than its parent.

DefaultAllowPrivilegeEscalation - Sets the default for the allowPrivilegeEscalation option. The default behavior without this is to allow privilege escalation so as to not break setuid binaries. If that behavior is not desired, this field can be used to default to disallow, while still permitting pods to request allowPrivilegeEscalation explicitly.

Capabilities

Linux capabilities provide a finer grained breakdown of the privileges traditionally associated with the superuser. Some of these capabilities can be used to escalate privileges or for container breakout, and may be restricted by the PodSecurityPolicy. For more details on Linux capabilities, see capabilities(7).

The following fields take a list of capabilities, specified as the capability name in ALL_CAPS without the CAP_ prefix.

AllowedCapabilities - Provides a whitelist of capabilities that may be added to a container. The default set of capabilities are implicitly allowed. The empty set means that no additional capabilities may be added beyond the default set. * can be used to allow all capabilities.

RequiredDropCapabilities - The capabilities which must be dropped from containers. These capabilities are removed from the default set, and must not be added. Capabilities listed in RequiredDropCapabilities must not be included in AllowedCapabilities or DefaultAddCapabilities.

DefaultAddCapabilities - The capabilities which are added to containers by default, in addition to the runtime defaults. See the Docker documentation for the default list of capabilities when using the Docker runtime.

SELinux

AllowedProcMountTypes

allowedProcMountTypes is a whitelist of allowed ProcMountTypes. Empty or nil indicates that only the DefaultProcMountType may be used.

DefaultProcMount uses the container runtime defaults for readonly and masked paths for /proc. Most container runtimes mask certain paths in /proc to avoid accidental security exposure of special devices or information. This is denoted as the string Default.

The only other ProcMountType is UnmaskedProcMount, which bypasses the default masking behavior of the container runtime and ensures the newly created /proc the container stays in tact with no modifications. This is denoted as the string Unmasked.

AppArmor

Controlled via annotations on the PodSecurityPolicy. Refer to the AppArmor documentation.

Seccomp

The use of seccomp profiles in pods can be controlled via annotations on the PodSecurityPolicy. Seccomp is an alpha feature in Kubernetes.

seccomp.security.alpha.kubernetes.io/defaultProfileName - Annotation that specifies the default seccomp profile to apply to containers. Possible values are:

seccomp.security.alpha.kubernetes.io/allowedProfileNames - Annotation that specifies which values are allowed for the pod seccomp annotations. Specified as a comma-delimited list of allowed values. Possible values are those listed above, plus * to allow all profiles. Absence of this annotation means that the default cannot be changed.

Sysctl

Controlled via annotations on the PodSecurityPolicy. Refer to the Sysctl documentation.