Volumes

On-disk files in a container are ephemeral, which presents some problems for non-trivial applications when running in containers. One problem occurs when a container crashes or is stopped. Container state is not saved so all of the files that were created or modified during the lifetime of the container are lost. During a crash, kubelet restarts the container with a clean state. Another problem occurs when multiple containers are running in a Pod and need to share files. It can be challenging to setup and access a shared filesystem across all of the containers. The Kubernetes volume abstraction solves both of these problems. Familiarity with Pods is suggested.

Background

Kubernetes supports many types of volumes. A Pod can use any number of volume types simultaneously. Ephemeral volume types have a lifetime of a pod, but persistent volumes exist beyond the lifetime of a pod. When a pod ceases to exist, Kubernetes destroys ephemeral volumes; however, Kubernetes does not destroy persistent volumes. For any kind of volume in a given pod, data is preserved across container restarts.

At its core, a volume is a directory, possibly with some data in it, which is accessible to the containers in a pod. How that directory comes to be, the medium that backs it, and the contents of it are determined by the particular volume type used.

To use a volume, specify the volumes to provide for the Pod in .spec.volumes and declare where to mount those volumes into containers in .spec.containers[*].volumeMounts. A process in a container sees a filesystem view composed from the initial contents of the container image, plus volumes (if defined) mounted inside the container. The process sees a root filesystem that initially matches the contents of the container image. Any writes to within that filesystem hierarchy, if allowed, affect what that process views when it performs a subsequent filesystem access. Volumes mount at the specified paths within the image. For each container defined within a Pod, you must independently specify where to mount each volume that the container uses.

Volumes cannot mount within other volumes (but see Using subPath for a related mechanism). Also, a volume cannot contain a hard link to anything in a different volume.

Types of volumes

Kubernetes supports several types of volumes.

awsElasticBlockStore (deprecated)

In Kubernetes 1.31, all operations for the in-tree awsElasticBlockStore type are redirected to the ebs.csi.aws.com CSI driver.

The AWSElasticBlockStore in-tree storage driver was deprecated in the Kubernetes v1.19 release and then removed entirely in the v1.27 release.

The Kubernetes project suggests that you use the AWS EBS third party storage driver instead.

azureDisk (deprecated)

In Kubernetes 1.31, all operations for the in-tree azureDisk type are redirected to the disk.csi.azure.com CSI driver.

The AzureDisk in-tree storage driver was deprecated in the Kubernetes v1.19 release and then removed entirely in the v1.27 release.

The Kubernetes project suggests that you use the Azure Disk third party storage driver instead.

azureFile (deprecated)

FEATURE STATE: Kubernetes v1.21 [deprecated]

The azureFile volume type mounts a Microsoft Azure File volume (SMB 2.1 and 3.0) into a pod.

For more details, see the azureFile volume plugin.

azureFile CSI migration

FEATURE STATE: Kubernetes v1.26 [stable]

The CSIMigration feature for azureFile, when enabled, redirects all plugin operations from the existing in-tree plugin to the file.csi.azure.com Container Storage Interface (CSI) Driver. In order to use this feature, the Azure File CSI Driver must be installed on the cluster and the CSIMigrationAzureFile feature gates must be enabled.

Azure File CSI driver does not support using same volume with different fsgroups. If CSIMigrationAzureFile is enabled, using same volume with different fsgroups won't be supported at all.

azureFile CSI migration complete

FEATURE STATE: Kubernetes v1.21 [alpha]

To disable the azureFile storage plugin from being loaded by the controller manager and the kubelet, set the InTreePluginAzureFileUnregister flag to true.

cephfs (removed)

Kubernetes 1.31 does not include a cephfs volume type.

The cephfs in-tree storage driver was deprecated in the Kubernetes v1.28 release and then removed entirely in the v1.31 release.

cinder (deprecated)

In Kubernetes 1.31, all operations for the in-tree cinder type are redirected to the cinder.csi.openstack.org CSI driver.

The OpenStack Cinder in-tree storage driver was deprecated in the Kubernetes v1.11 release and then removed entirely in the v1.26 release.

The Kubernetes project suggests that you use the OpenStack Cinder third party storage driver instead.

configMap

A ConfigMap provides a way to inject configuration data into pods. The data stored in a ConfigMap can be referenced in a volume of type configMap and then consumed by containerized applications running in a pod.

When referencing a ConfigMap, you provide the name of the ConfigMap in the volume. You can customize the path to use for a specific entry in the ConfigMap. The following configuration shows how to mount the log-config ConfigMap onto a Pod called configmap-pod:

apiVersion: v1
kind: Pod
metadata:
  name: configmap-pod
spec:
  containers:
    - name: test
      image: busybox:1.28
      command: ['sh', '-c', 'echo "The app is running!" && tail -f /dev/null']
      volumeMounts:
        - name: config-vol
          mountPath: /etc/config
  volumes:
    - name: config-vol
      configMap:
        name: log-config
        items:
          - key: log_level
            path: log_level

The log-config ConfigMap is mounted as a volume, and all contents stored in its log_level entry are mounted into the Pod at path /etc/config/log_level. Note that this path is derived from the volume's mountPath and the path keyed with log_level.

downwardAPI

A downwardAPI volume makes downward API data available to applications. Within the volume, you can find the exposed data as read-only files in plain text format.

See Expose Pod Information to Containers Through Files to learn more.

emptyDir

For a Pod that defines an emptyDir volume, the volume is created when the Pod is assigned to a node. As the name says, the emptyDir volume is initially empty. All containers in the Pod can read and write the same files in the emptyDir volume, though that volume can be mounted at the same or different paths in each container. When a Pod is removed from a node for any reason, the data in the emptyDir is deleted permanently.

Some uses for an emptyDir are:

  • scratch space, such as for a disk-based merge sort
  • checkpointing a long computation for recovery from crashes
  • holding files that a content-manager container fetches while a webserver container serves the data

The emptyDir.medium field controls where emptyDir volumes are stored. By default emptyDir volumes are stored on whatever medium that backs the node such as disk, SSD, or network storage, depending on your environment. If you set the emptyDir.medium field to "Memory", Kubernetes mounts a tmpfs (RAM-backed filesystem) for you instead. While tmpfs is very fast be aware that, unlike disks, files you write count against the memory limit of the container that wrote them.

A size limit can be specified for the default medium, which limits the capacity of the emptyDir volume. The storage is allocated from node ephemeral storage. If that is filled up from another source (for example, log files or image overlays), the emptyDir may run out of capacity before this limit.

emptyDir configuration example

apiVersion: v1
kind: Pod
metadata:
  name: test-pd
spec:
  containers:
  - image: registry.k8s.io/test-webserver
    name: test-container
    volumeMounts:
    - mountPath: /cache
      name: cache-volume
  volumes:
  - name: cache-volume
    emptyDir:
      sizeLimit: 500Mi

fc (fibre channel)

An fc volume type allows an existing fibre channel block storage volume to mount in a Pod. You can specify single or multiple target world wide names (WWNs) using the parameter targetWWNs in your Volume configuration. If multiple WWNs are specified, targetWWNs expect that those WWNs are from multi-path connections.

See the fibre channel example for more details.

gcePersistentDisk (deprecated)

In Kubernetes 1.31, all operations for the in-tree gcePersistentDisk type are redirected to the pd.csi.storage.gke.io CSI driver.

The gcePersistentDisk in-tree storage driver was deprecated in the Kubernetes v1.17 release and then removed entirely in the v1.28 release.

The Kubernetes project suggests that you use the Google Compute Engine Persistent Disk CSI third party storage driver instead.

gitRepo (deprecated)

A gitRepo volume is an example of a volume plugin. This plugin mounts an empty directory and clones a git repository into this directory for your Pod to use.

Here is an example of a gitRepo volume:

apiVersion: v1
kind: Pod
metadata:
  name: server
spec:
  containers:
  - image: nginx
    name: nginx
    volumeMounts:
    - mountPath: /mypath
      name: git-volume
  volumes:
  - name: git-volume
    gitRepo:
      repository: "git@somewhere:me/my-git-repository.git"
      revision: "22f1d8406d464b0c0874075539c1f2e96c253775"

glusterfs (removed)

Kubernetes 1.31 does not include a glusterfs volume type.

The GlusterFS in-tree storage driver was deprecated in the Kubernetes v1.25 release and then removed entirely in the v1.26 release.

hostPath

A hostPath volume mounts a file or directory from the host node's filesystem into your Pod. This is not something that most Pods will need, but it offers a powerful escape hatch for some applications.

Some uses for a hostPath are:

  • running a container that needs access to node-level system components (such as a container that transfers system logs to a central location, accessing those logs using a read-only mount of /var/log)
  • making a configuration file stored on the host system available read-only to a static pod; unlike normal Pods, static Pods cannot access ConfigMaps

hostPath volume types

In addition to the required path property, you can optionally specify a type for a hostPath volume.

The available values for type are:

ValueBehavior
‌""Empty string (default) is for backward compatibility, which means that no checks will be performed before mounting the hostPath volume.
DirectoryOrCreateIf nothing exists at the given path, an empty directory will be created there as needed with permission set to 0755, having the same group and ownership with Kubelet.
DirectoryA directory must exist at the given path
FileOrCreateIf nothing exists at the given path, an empty file will be created there as needed with permission set to 0644, having the same group and ownership with Kubelet.
FileA file must exist at the given path
SocketA UNIX socket must exist at the given path
CharDevice(Linux nodes only) A character device must exist at the given path
BlockDevice(Linux nodes only) A block device must exist at the given path

Some files or directories created on the underlying hosts might only be accessible by root. You then either need to run your process as root in a privileged container or modify the file permissions on the host to be able to read from (or write to) a hostPath volume.

hostPath configuration example


---
# This manifest mounts /data/foo on the host as /foo inside the
# single container that runs within the hostpath-example-linux Pod.
#
# The mount into the container is read-only.
apiVersion: v1
kind: Pod
metadata:
  name: hostpath-example-linux
spec:
  os: { name: linux }
  nodeSelector:
    kubernetes.io/os: linux
  containers:
  - name: example-container
    image: registry.k8s.io/test-webserver
    volumeMounts:
    - mountPath: /foo
      name: example-volume
      readOnly: true
  volumes:
  - name: example-volume
    # mount /data/foo, but only if that directory already exists
    hostPath:
      path: /data/foo # directory location on host
      type: Directory # this field is optional


---
# This manifest mounts C:\Data\foo on the host as C:\foo, inside the
# single container that runs within the hostpath-example-windows Pod.
#
# The mount into the container is read-only.
apiVersion: v1
kind: Pod
metadata:
  name: hostpath-example-windows
spec:
  os: { name: windows }
  nodeSelector:
    kubernetes.io/os: windows
  containers:
  - name: example-container
    image: microsoft/windowsservercore:1709
    volumeMounts:
    - name: example-volume
      mountPath: "C:\\foo"
      readOnly: true
  volumes:
    # mount C:\Data\foo from the host, but only if that directory already exists
  - name: example-volume
    hostPath:
      path: "C:\\Data\\foo" # directory location on host
      type: Directory       # this field is optional

hostPath FileOrCreate configuration example

The following manifest defines a Pod that mounts /var/local/aaa inside the single container in the Pod. If the node does not already have a path /var/local/aaa, the kubelet creates it as a directory and then mounts it into the Pod.

If /var/local/aaa already exists but is not a directory, the Pod fails. Additionally, the kubelet attempts to make a file named /var/local/aaa/1.txt inside that directory (as seen from the host); if something already exists at that path and isn't a regular file, the Pod fails.

Here's the example manifest:

apiVersion: v1
kind: Pod
metadata:
  name: test-webserver
spec:
  os: { name: linux }
  nodeSelector:
    kubernetes.io/os: linux
  containers:
  - name: test-webserver
    image: registry.k8s.io/test-webserver:latest
    volumeMounts:
    - mountPath: /var/local/aaa
      name: mydir
    - mountPath: /var/local/aaa/1.txt
      name: myfile
  volumes:
  - name: mydir
    hostPath:
      # Ensure the file directory is created.
      path: /var/local/aaa
      type: DirectoryOrCreate
  - name: myfile
    hostPath:
      path: /var/local/aaa/1.txt
      type: FileOrCreate

image

FEATURE STATE: Kubernetes v1.31 [alpha]

An image volume source represents an OCI object (a container image or artifact) which is available on the kubelet's host machine.

One example to use the image volume source is:

apiVersion: v1
kind: Pod
metadata:
  name: image-volume
spec:
  containers:
  - name: shell
    command: ["sleep", "infinity"]
    image: debian
    volumeMounts:
    - name: volume
      mountPath: /volume
  volumes:
  - name: volume
    image:
      reference: quay.io/crio/artifact:v1
      pullPolicy: IfNotPresent

The volume is resolved at pod startup depending on which pullPolicy value is provided:

Always
the kubelet always attempts to pull the reference. If the pull fails, the kubelet sets the Pod to Failed.
Never
the kubelet never pulls the reference and only uses a local image or artifact. The Pod becomes Failed if any layers of the image aren't already present locally, or if the manifest for that image isn't already cached.
IfNotPresent
the kubelet pulls if the reference isn't already present on disk. The Pod becomes Failed if the reference isn't present and the pull fails.

The volume gets re-resolved if the pod gets deleted and recreated, which means that new remote content will become available on pod recreation. A failure to resolve or pull the image during pod startup will block containers from starting and may add significant latency. Failures will be retried using normal volume backoff and will be reported on the pod reason and message.

The types of objects that may be mounted by this volume are defined by the container runtime implementation on a host machine and at minimum must include all valid types supported by the container image field. The OCI object gets mounted in a single directory (spec.containers[*].volumeMounts.mountPath) by will be mounted read-only. On Linux, the container runtime typically also mounts the volume with file execution blocked (noexec).

Beside that:

  • Sub path mounts for containers are not supported (spec.containers[*].volumeMounts.subpath).
  • The field spec.securityContext.fsGroupChangePolicy has no effect on this volume type.
  • The AlwaysPullImages Admission Controller does also work for this volume source like for container images.

The following fields are available for the image type:

reference
Artifact reference to be used. For example, you could specify registry.k8s.io/conformance:v1.31.0 to load the files from the Kubernetes conformance test image. Behaves in the same way as pod.spec.containers[*].image. Pull secrets will be assembled in the same way as for the container image by looking up node credentials, service account image pull secrets, and pod spec image pull secrets. This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets. More info about container images
pullPolicy
Policy for pulling OCI objects. Possible values are: Always, Never or IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise.

See the Use an Image Volume With a Pod example for more details on how to use the volume source.

iscsi

An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod. Unlike emptyDir, which is erased when a Pod is removed, the contents of an iscsi volume are preserved and the volume is merely unmounted. This means that an iscsi volume can be pre-populated with data, and that data can be shared between pods.

A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously. This means that you can pre-populate a volume with your dataset and then serve it in parallel from as many Pods as you need. Unfortunately, iSCSI volumes can only be mounted by a single consumer in read-write mode. Simultaneous writers are not allowed.

See the iSCSI example for more details.

local

A local volume represents a mounted local storage device such as a disk, partition or directory.

Local volumes can only be used as a statically created PersistentVolume. Dynamic provisioning is not supported.

Compared to hostPath volumes, local volumes are used in a durable and portable manner without manually scheduling pods to nodes. The system is aware of the volume's node constraints by looking at the node affinity on the PersistentVolume.

However, local volumes are subject to the availability of the underlying node and are not suitable for all applications. If a node becomes unhealthy, then the local volume becomes inaccessible by the pod. The pod using this volume is unable to run. Applications using local volumes must be able to tolerate this reduced availability, as well as potential data loss, depending on the durability characteristics of the underlying disk.

The following example shows a PersistentVolume using a local volume and nodeAffinity:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: example-pv
spec:
  capacity:
    storage: 100Gi
  volumeMode: Filesystem
  accessModes:
  - ReadWriteOnce
  persistentVolumeReclaimPolicy: Delete
  storageClassName: local-storage
  local:
    path: /mnt/disks/ssd1
  nodeAffinity:
    required:
      nodeSelectorTerms:
      - matchExpressions:
        - key: kubernetes.io/hostname
          operator: In
          values:
          - example-node

You must set a PersistentVolume nodeAffinity when using local volumes. The Kubernetes scheduler uses the PersistentVolume nodeAffinity to schedule these Pods to the correct node.

PersistentVolume volumeMode can be set to "Block" (instead of the default value "Filesystem") to expose the local volume as a raw block device.

When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer. For more details, see the local StorageClass example. Delaying volume binding ensures that the PersistentVolumeClaim binding decision will also be evaluated with any other node constraints the Pod may have, such as node resource requirements, node selectors, Pod affinity, and Pod anti-affinity.

An external static provisioner can be run separately for improved management of the local volume lifecycle. Note that this provisioner does not support dynamic provisioning yet. For an example on how to run an external local provisioner, see the local volume provisioner user guide.

nfs

An nfs volume allows an existing NFS (Network File System) share to be mounted into a Pod. Unlike emptyDir, which is erased when a Pod is removed, the contents of an nfs volume are preserved and the volume is merely unmounted. This means that an NFS volume can be pre-populated with data, and that data can be shared between pods. NFS can be mounted by multiple writers simultaneously.

apiVersion: v1
kind: Pod
metadata:
  name: test-pd
spec:
  containers:
  - image: registry.k8s.io/test-webserver
    name: test-container
    volumeMounts:
    - mountPath: /my-nfs-data
      name: test-volume
  volumes:
  - name: test-volume
    nfs:
      server: my-nfs-server.example.com
      path: /my-nfs-volume
      readOnly: true

See the NFS example for an example of mounting NFS volumes with PersistentVolumes.

persistentVolumeClaim

A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod. PersistentVolumeClaims are a way for users to "claim" durable storage (such as an iSCSI volume) without knowing the details of the particular cloud environment.

See the information about PersistentVolumes for more details.

portworxVolume (deprecated)

FEATURE STATE: Kubernetes v1.25 [deprecated]

A portworxVolume is an elastic block storage layer that runs hyperconverged with Kubernetes. Portworx fingerprints storage in a server, tiers based on capabilities, and aggregates capacity across multiple servers. Portworx runs in-guest in virtual machines or on bare metal Linux nodes.

A portworxVolume can be dynamically created through Kubernetes or it can also be pre-provisioned and referenced inside a Pod. Here is an example Pod referencing a pre-provisioned Portworx volume:

apiVersion: v1
kind: Pod
metadata:
  name: test-portworx-volume-pod
spec:
  containers:
  - image: registry.k8s.io/test-webserver
    name: test-container
    volumeMounts:
    - mountPath: /mnt
      name: pxvol
  volumes:
  - name: pxvol
    # This Portworx volume must already exist.
    portworxVolume:
      volumeID: "pxvol"
      fsType: "<fs-type>"

For more details, see the Portworx volume examples.

Portworx CSI migration

FEATURE STATE: Kubernetes v1.25 [beta]

By default, Kubernetes 1.31 attempts to migrate legacy Portworx volumes to use CSI. (CSI migration for Portworx has been available since Kubernetes v1.23, but was only turned on by default since the v1.31 release). If you want to disable automatic migration, you can set the CSIMigrationPortworx feature gate to false; you need to make that change for the kube-controller-manager and on every relevant kubelet.

It redirects all plugin operations from the existing in-tree plugin to the pxd.portworx.com Container Storage Interface (CSI) Driver. Portworx CSI Driver must be installed on the cluster.

projected

A projected volume maps several existing volume sources into the same directory. For more details, see projected volumes.

rbd (removed)

Kubernetes 1.31 does not include a rbd volume type.

The Rados Block Device (RBD) in-tree storage driver and its csi migration support were deprecated in the Kubernetes v1.28 release and then removed entirely in the v1.31 release.

secret

A secret volume is used to pass sensitive information, such as passwords, to Pods. You can store secrets in the Kubernetes API and mount them as files for use by pods without coupling to Kubernetes directly. secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.

For more details, see Configuring Secrets.

vsphereVolume (deprecated)

A vsphereVolume is used to mount a vSphere VMDK volume into your Pod. The contents of a volume are preserved when it is unmounted. It supports both VMFS and VSAN datastore.

For more information, see the vSphere volume examples.

vSphere CSI migration

FEATURE STATE: Kubernetes v1.26 [stable]

In Kubernetes 1.31, all operations for the in-tree vsphereVolume type are redirected to the csi.vsphere.vmware.com CSI driver.

vSphere CSI driver must be installed on the cluster. You can find additional advice on how to migrate in-tree vsphereVolume in VMware's documentation page Migrating In-Tree vSphere Volumes to vSphere Container Storage Plug-in. If vSphere CSI Driver is not installed volume operations can not be performed on the PV created with the in-tree vsphereVolume type.

You must run vSphere 7.0u2 or later in order to migrate to the vSphere CSI driver.

If you are running a version of Kubernetes other than v1.31, consult the documentation for that version of Kubernetes.

vSphere CSI migration complete

FEATURE STATE: Kubernetes v1.19 [beta]

To turn off the vsphereVolume plugin from being loaded by the controller manager and the kubelet, you need to set InTreePluginvSphereUnregister feature flag to true. You must install a csi.vsphere.vmware.com CSI driver on all worker nodes.

Using subPath

Sometimes, it is useful to share one volume for multiple uses in a single pod. The volumeMounts[*].subPath property specifies a sub-path inside the referenced volume instead of its root.

The following example shows how to configure a Pod with a LAMP stack (Linux Apache MySQL PHP) using a single, shared volume. This sample subPath configuration is not recommended for production use.

The PHP application's code and assets map to the volume's html folder and the MySQL database is stored in the volume's mysql folder. For example:

apiVersion: v1
kind: Pod
metadata:
  name: my-lamp-site
spec:
    containers:
    - name: mysql
      image: mysql
      env:
      - name: MYSQL_ROOT_PASSWORD
        value: "rootpasswd"
      volumeMounts:
      - mountPath: /var/lib/mysql
        name: site-data
        subPath: mysql
    - name: php
      image: php:7.0-apache
      volumeMounts:
      - mountPath: /var/www/html
        name: site-data
        subPath: html
    volumes:
    - name: site-data
      persistentVolumeClaim:
        claimName: my-lamp-site-data

Using subPath with expanded environment variables

FEATURE STATE: Kubernetes v1.17 [stable]

Use the subPathExpr field to construct subPath directory names from downward API environment variables. The subPath and subPathExpr properties are mutually exclusive.

In this example, a Pod uses subPathExpr to create a directory pod1 within the hostPath volume /var/log/pods. The hostPath volume takes the Pod name from the downwardAPI. The host directory /var/log/pods/pod1 is mounted at /logs in the container.

apiVersion: v1
kind: Pod
metadata:
  name: pod1
spec:
  containers:
  - name: container1
    env:
    - name: POD_NAME
      valueFrom:
        fieldRef:
          apiVersion: v1
          fieldPath: metadata.name
    image: busybox:1.28
    command: [ "sh", "-c", "while [ true ]; do echo 'Hello'; sleep 10; done | tee -a /logs/hello.txt" ]
    volumeMounts:
    - name: workdir1
      mountPath: /logs
      # The variable expansion uses round brackets (not curly brackets).
      subPathExpr: $(POD_NAME)
  restartPolicy: Never
  volumes:
  - name: workdir1
    hostPath:
      path: /var/log/pods

Resources

The storage media (such as Disk or SSD) of an emptyDir volume is determined by the medium of the filesystem holding the kubelet root dir (typically /var/lib/kubelet). There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between containers or between pods.

To learn about requesting space using a resource specification, see how to manage resources.

Out-of-tree volume plugins

The out-of-tree volume plugins include Container Storage Interface (CSI), and also FlexVolume (which is deprecated). These plugins enable storage vendors to create custom storage plugins without adding their plugin source code to the Kubernetes repository.

Previously, all volume plugins were "in-tree". The "in-tree" plugins were built, linked, compiled, and shipped with the core Kubernetes binaries. This meant that adding a new storage system to Kubernetes (a volume plugin) required checking code into the core Kubernetes code repository.

Both CSI and FlexVolume allow volume plugins to be developed independent of the Kubernetes code base, and deployed (installed) on Kubernetes clusters as extensions.

For storage vendors looking to create an out-of-tree volume plugin, please refer to the volume plugin FAQ.

csi

Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.

Please read the CSI design proposal for more information.

Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach or mount the volumes exposed by the CSI driver.

A csi volume can be used in a Pod in three different ways:

The following fields are available to storage administrators to configure a CSI persistent volume:

  • driver: A string value that specifies the name of the volume driver to use. This value must correspond to the value returned in the GetPluginInfoResponse by the CSI driver as defined in the CSI spec. It is used by Kubernetes to identify which CSI driver to call out to, and by CSI driver components to identify which PV objects belong to the CSI driver.
  • volumeHandle: A string value that uniquely identifies the volume. This value must correspond to the value returned in the volume.id field of the CreateVolumeResponse by the CSI driver as defined in the CSI spec. The value is passed as volume_id on all calls to the CSI volume driver when referencing the volume.
  • readOnly: An optional boolean value indicating whether the volume is to be "ControllerPublished" (attached) as read only. Default is false. This value is passed to the CSI driver via the readonly field in the ControllerPublishVolumeRequest.
  • fsType: If the PV's VolumeMode is Filesystem then this field may be used to specify the filesystem that should be used to mount the volume. If the volume has not been formatted and formatting is supported, this value will be used to format the volume. This value is passed to the CSI driver via the VolumeCapability field of ControllerPublishVolumeRequest, NodeStageVolumeRequest, and NodePublishVolumeRequest.
  • volumeAttributes: A map of string to string that specifies static properties of a volume. This map must correspond to the map returned in the volume.attributes field of the CreateVolumeResponse by the CSI driver as defined in the CSI spec. The map is passed to the CSI driver via the volume_context field in the ControllerPublishVolumeRequest, NodeStageVolumeRequest, and NodePublishVolumeRequest.
  • controllerPublishSecretRef: A reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI ControllerPublishVolume and ControllerUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the Secret contains more than one secret, all secrets are passed.
  • nodeExpandSecretRef: A reference to the secret containing sensitive information to pass to the CSI driver to complete the CSI NodeExpandVolume call. This field is optional, and may be empty if no secret is required. If the object contains more than one secret, all secrets are passed. When you have configured secret data for node-initiated volume expansion, the kubelet passes that data via the NodeExpandVolume() call to the CSI driver. All supported versions of Kubernetes offer the nodeExpandSecretRef field, and have it available by default. Kubernetes releases prior to v1.25 did not include this support.
  • Enable the feature gate named CSINodeExpandSecret for each kube-apiserver and for the kubelet on every node. Since Kubernetes version 1.27 this feature has been enabled by default and no explicit enablement of the feature gate is required. You must also be using a CSI driver that supports or requires secret data during node-initiated storage resize operations.
  • nodePublishSecretRef: A reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume call. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secrets are passed.
  • nodeStageSecretRef: A reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodeStageVolume call. This field is optional, and may be empty if no secret is required. If the Secret contains more than one secret, all secrets are passed.

CSI raw block volume support

FEATURE STATE: Kubernetes v1.18 [stable]

Vendors with external CSI drivers can implement raw block volume support in Kubernetes workloads.

You can set up your PersistentVolume/PersistentVolumeClaim with raw block volume support as usual, without any CSI specific changes.

CSI ephemeral volumes

FEATURE STATE: Kubernetes v1.25 [stable]

You can directly configure CSI volumes within the Pod specification. Volumes specified in this way are ephemeral and do not persist across pod restarts. See Ephemeral Volumes for more information.

For more information on how to develop a CSI driver, refer to the kubernetes-csi documentation

Windows CSI proxy

FEATURE STATE: Kubernetes v1.22 [stable]

CSI node plugins need to perform various privileged operations like scanning of disk devices and mounting of file systems. These operations differ for each host operating system. For Linux worker nodes, containerized CSI node plugins are typically deployed as privileged containers. For Windows worker nodes, privileged operations for containerized CSI node plugins is supported using csi-proxy, a community-managed, stand-alone binary that needs to be pre-installed on each Windows node.

For more details, refer to the deployment guide of the CSI plugin you wish to deploy.

Migrating to CSI drivers from in-tree plugins

FEATURE STATE: Kubernetes v1.25 [stable]

The CSIMigration feature directs operations against existing in-tree plugins to corresponding CSI plugins (which are expected to be installed and configured). As a result, operators do not have to make any configuration changes to existing Storage Classes, PersistentVolumes or PersistentVolumeClaims (referring to in-tree plugins) when transitioning to a CSI driver that supersedes an in-tree plugin.

The operations and features that are supported include: provisioning/delete, attach/detach, mount/unmount and resizing of volumes.

In-tree plugins that support CSIMigration and have a corresponding CSI driver implemented are listed in Types of Volumes.

The following in-tree plugins support persistent storage on Windows nodes:

flexVolume (deprecated)

FEATURE STATE: Kubernetes v1.23 [deprecated]

FlexVolume is an out-of-tree plugin interface that uses an exec-based model to interface with storage drivers. The FlexVolume driver binaries must be installed in a pre-defined volume plugin path on each node and in some cases the control plane nodes as well.

Pods interact with FlexVolume drivers through the flexVolume in-tree volume plugin. For more details, see the FlexVolume README document.

The following FlexVolume plugins, deployed as PowerShell scripts on the host, support Windows nodes:

Mount propagation

Mount propagation allows for sharing volumes mounted by a container to other containers in the same pod, or even to other pods on the same node.

Mount propagation of a volume is controlled by the mountPropagation field in containers[*].volumeMounts. Its values are:

  • None - This volume mount will not receive any subsequent mounts that are mounted to this volume or any of its subdirectories by the host. In similar fashion, no mounts created by the container will be visible on the host. This is the default mode.

    This mode is equal to rprivate mount propagation as described in mount(8)

    However, the CRI runtime may choose rslave mount propagation (i.e., HostToContainer) instead, when rprivate propagation is not applicable. cri-dockerd (Docker) is known to choose rslave mount propagation when the mount source contains the Docker daemon's root directory (/var/lib/docker).

  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.

    In other words, if the host mounts anything inside the volume mount, the container will see it mounted there.

    Similarly, if any Pod with Bidirectional mount propagation to the same volume mounts anything there, the container with HostToContainer mount propagation will see it.

    This mode is equal to rslave mount propagation as described in the mount(8)

  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the container will be propagated back to the host and to all containers of all pods that use the same volume.

    A typical use case for this mode is a Pod with a FlexVolume or CSI driver or a Pod that needs to mount something on the host using a hostPath volume.

    This mode is equal to rshared mount propagation as described in the mount(8)

Read-only mounts

A mount can be made read-only by setting the .spec.containers[].volumeMounts[].readOnly field to true. This does not make the volume itself read-only, but that specific container will not be able to write to it. Other containers in the Pod may mount the same volume as read-write.

On Linux, read-only mounts are not recursively read-only by default. For example, consider a Pod which mounts the hosts /mnt as a hostPath volume. If there is another filesystem mounted read-write on /mnt/<SUBMOUNT> (such as tmpfs, NFS, or USB storage), the volume mounted into the container(s) will also have a writeable /mnt/<SUBMOUNT>, even if the mount itself was specified as read-only.

Recursive read-only mounts

FEATURE STATE: Kubernetes v1.30 [alpha]

Recursive read-only mounts can be enabled by setting the RecursiveReadOnlyMounts feature gate for kubelet and kube-apiserver, and setting the .spec.containers[].volumeMounts[].recursiveReadOnly field for a pod.

The allowed values are:

  • Disabled (default): no effect.

  • Enabled: makes the mount recursively read-only. Needs all the following requirements to be satisfied:

    • readOnly is set to true
    • mountPropagation is unset, or, set to None
    • The host is running with Linux kernel v5.12 or later
    • The CRI-level container runtime supports recursive read-only mounts
    • The OCI-level container runtime supports recursive read-only mounts. It will fail if any of these is not true.
  • IfPossible: attempts to apply Enabled, and falls back to Disabled if the feature is not supported by the kernel or the runtime class.

Example:

apiVersion: v1
kind: Pod
metadata:
  name: rro
spec:
  volumes:
    - name: mnt
      hostPath:
        # tmpfs is mounted on /mnt/tmpfs
        path: /mnt
  containers:
    - name: busybox
      image: busybox
      args: ["sleep", "infinity"]
      volumeMounts:
        # /mnt-rro/tmpfs is not writable
        - name: mnt
          mountPath: /mnt-rro
          readOnly: true
          mountPropagation: None
          recursiveReadOnly: Enabled
        # /mnt-ro/tmpfs is writable
        - name: mnt
          mountPath: /mnt-ro
          readOnly: true
        # /mnt-rw/tmpfs is writable
        - name: mnt
          mountPath: /mnt-rw

When this property is recognized by kubelet and kube-apiserver, the .status.containerStatuses[].volumeMounts[].recursiveReadOnly field is set to either Enabled or Disabled.

Implementations

The following container runtimes are known to support recursive read-only mounts.

CRI-level:

OCI-level:

What's next

Follow an example of deploying WordPress and MySQL with Persistent Volumes.

Items on this page refer to third party products or projects that provide functionality required by Kubernetes. The Kubernetes project authors aren't responsible for those third-party products or projects. See the CNCF website guidelines for more details.

You should read the content guide before proposing a change that adds an extra third-party link.

Last modified August 22, 2024 at 11:56 AM PST: Update mount propagation documentation (3872831bf1)