Reference Documentation

Edit This Page

Using Admission Controllers

This page provides an overview of Admission Controllers.

What are they?

An admission controller is a piece of code that intercepts requests to the Kubernetes API server prior to persistence of the object, but after the request is authenticated and authorized. The controllers consist of the list below, are compiled into the kube-apiserver binary, and may only be configured by the cluster administrator. In that list, there are two special controllers: MutatingAdmissionWebhook and ValidatingAdmissionWebhook. These execute the mutating and validating (respectively) admission control webhooks which are configured in the API.

Admission controllers may be “validating”, “mutating”, or both. Mutating controllers may modify the objects they admit; validating controllers may not.

The admission control process proceeds in two phases. In the first phase, mutating admission controllers are run. In the second phase, validating admission controllers are run. Note again that some of the controllers are both.

If any of the controllers in either phase reject the request, the entire request is rejected immediately and an error is returned to the end-user.

Finally, in addition to sometimes mutating the object in question, admission controllers may sometimes have side effects, that is, mutate related resources as part of request processing. Incrementing quota usage is the canonical example of why this is necessary. Any such side-effect needs a corresponding reclamation or reconciliation process, as a given admission controller does not know for sure that a given request will pass all of the other admission controllers.

Why do I need them?

Many advanced features in Kubernetes require an admission controller to be enabled in order to properly support the feature. As a result, a Kubernetes API server that is not properly configured with the right set of admission controllers is an incomplete server and will not support all the features you expect.

How do I turn on an admission controller?

The Kubernetes API server flag enable-admission-plugins takes a comma-delimited list of admission control plugins to invoke prior to modifying objects in the cluster. For example, the following command line enables the NamespaceLifecycle and the LimitRanger admission control plugins:

kube-apiserver --enable-admission-plugins=NamespaceLifecyle,LimitRanger ...
Note: Depending on the way your Kubernetes cluster is deployed and how the API server is started, you may need to apply the settings in different ways. For example, you may have to modify the systemd unit file if the API server is deployed as a systemd service, you may modify the manifest file for the API server if Kubernetes is deployed in a self-hosted way.

How do I turn off an admission controller?

The Kubernetes API server flag disable-admission-plugins takes a comma-delimited list of admission control plugins to be disabled, even if they are in the list of plugins enabled by default.

kube-apiserver --disable-admission-plugins=PodNodeSelector,AlwaysDeny ...

What does each admission controller do?

AlwaysAdmit (DEPRECATED)

Use this admission controller by itself to pass-through all requests. AlwaysAdmit is DEPRECATED as no real meaning.

AlwaysPullImages

This admission controller modifies every new Pod to force the image pull policy to Always. This is useful in a multitenant cluster so that users can be assured that their private images can only be used by those who have the credentials to pull them. Without this admission controller, once an image has been pulled to a node, any pod from any user can use it simply by knowing the image’s name (assuming the Pod is scheduled onto the right node), without any authorization check against the image. When this admission controller is enabled, images are always pulled prior to starting containers, which means valid credentials are required.

AlwaysDeny (DEPRECATED)

Rejects all requests. AlwaysDeny is DEPRECATED as no real meaning.

DefaultStorageClass

This admission controller observes creation of PersistentVolumeClaim objects that do not request any specific storage class and automatically adds a default storage class to them. This way, users that do not request any special storage class do not need to care about them at all and they will get the default one.

This admission controller does not do anything when no default storage class is configured. When more than one storage class is marked as default, it rejects any creation of PersistentVolumeClaim with an error and an administrator must revisit their StorageClass objects and mark only one as default. This admission controller ignores any PersistentVolumeClaim updates; it acts only on creation.

See persistent volume documentation about persistent volume claims and storage classes and how to mark a storage class as default.

DefaultTolerationSeconds

This admission controller sets the default forgiveness toleration for pods to tolerate the taints notready:NoExecute and unreachable:NoExecute for 5 minutes, if the pods don’t already have toleration for taints node.kubernetes.io/not-ready:NoExecute or node.alpha.kubernetes.io/unreachable:NoExecute.

DenyExecOnPrivileged (deprecated)

This admission controller will intercept all requests to exec a command in a pod if that pod has a privileged container.

If your cluster supports privileged containers, and you want to restrict the ability of end-users to exec commands in those containers, we strongly encourage enabling this admission controller.

This functionality has been merged into DenyEscalatingExec.

DenyEscalatingExec

This admission controller will deny exec and attach commands to pods that run with escalated privileges that allow host access. This includes pods that run as privileged, have access to the host IPC namespace, and have access to the host PID namespace.

If your cluster supports containers that run with escalated privileges, and you want to restrict the ability of end-users to exec commands in those containers, we strongly encourage enabling this admission controller.

EventRateLimit (alpha)

This admission controller mitigates the problem where the API server gets flooded by event requests. The cluster admin can specify event rate limits by:

kind: AdmissionConfiguration
apiVersion: apiserver.k8s.io/v1alpha1
plugins:
- name: EventRateLimit
  path: eventconfig.yaml
...

There are four types of limits that can be specified in the configuration:

Below is a sample eventconfig.yaml for such a configuration:

kind: Configuration
apiVersion: eventratelimit.admission.k8s.io/v1alpha1
limits:
- type: Namespace
  qps: 50
  burst: 100
  cacheSize: 2000
- type: User
  qps: 10
  burst: 50

See the EventRateLimit proposal for more details.

ExtendedResourceToleration

This plug-in facilitates creation of dedicated nodes with extended resources. If operators want to create dedicated nodes with extended resources (like GPUs, FPGAs etc.), they are expected to taint the node with the extended resource name as the key. This admission controller, if enabled, automatically adds tolerations for such taints to pods requesting extended resources, so users don’t have to manually add these tolerations.

ImagePolicyWebhook

The ImagePolicyWebhook admission controller allows a backend webhook to make admission decisions.

Configuration File Format

ImagePolicyWebhook uses a configuration file to set options for the behavior of the backend. This file may be json or yaml and has the following format:

imagePolicy:
  kubeConfigFile: /path/to/kubeconfig/for/backend
  # time in s to cache approval
  allowTTL: 50
  # time in s to cache denial
  denyTTL: 50 
  # time in ms to wait between retries
  retryBackoff: 500
  # determines behavior if the webhook backend fails
  defaultAllow: true

Reference the ImagePolicyWebhook configuration file from the file provided to the API server’s command line flag --admission-control-config-file:

kind: AdmissionConfiguration
apiVersion: apiserver.k8s.io/v1alpha1
plugins:
- name: ImagePolicyWebhook
  path: imagepolicyconfig.yaml
...

The ImagePolicyWebhook config file must reference a kubeconfig formatted file which sets up the connection to the backend. It is required that the backend communicate over TLS.

The kubeconfig file’s cluster field must point to the remote service, and the user field must contain the returned authorizer.

# clusters refers to the remote service.
clusters:
- name: name-of-remote-imagepolicy-service
  cluster:
    certificate-authority: /path/to/ca.pem    # CA for verifying the remote service.
    server: https://images.example.com/policy # URL of remote service to query. Must use 'https'.

# users refers to the API server's webhook configuration.
users:
- name: name-of-api-server
  user:
    client-certificate: /path/to/cert.pem # cert for the webhook admission controller to use
    client-key: /path/to/key.pem          # key matching the cert

For additional HTTP configuration, refer to the kubeconfig documentation.

Request Payloads

When faced with an admission decision, the API Server POSTs a JSON serialized imagepolicy.k8s.io/v1alpha1 ImageReview object describing the action. This object contains fields describing the containers being admitted, as well as any pod annotations that match *.image-policy.k8s.io/*.

Note that webhook API objects are subject to the same versioning compatibility rules as other Kubernetes API objects. Implementers should be aware of looser compatibility promises for alpha objects and check the “apiVersion” field of the request to ensure correct deserialization. Additionally, the API Server must enable the imagepolicy.k8s.io/v1alpha1 API extensions group (--runtime-config=imagepolicy.k8s.io/v1alpha1=true).

An example request body:

{  
  "apiVersion":"imagepolicy.k8s.io/v1alpha1",
  "kind":"ImageReview",
  "spec":{  
    "containers":[  
      {  
        "image":"myrepo/myimage:v1"
      },
      {  
        "image":"myrepo/myimage@sha256:beb6bd6a68f114c1dc2ea4b28db81bdf91de202a9014972bec5e4d9171d90ed"
      }
    ],
    "annotations":[  
      "mycluster.image-policy.k8s.io/ticket-1234": "break-glass"
    ],
    "namespace":"mynamespace"
  }
}

The remote service is expected to fill the ImageReviewStatus field of the request and respond to either allow or disallow access. The response body’s “spec” field is ignored and may be omitted. A permissive response would return:

{
  "apiVersion": "imagepolicy.k8s.io/v1alpha1",
  "kind": "ImageReview",
  "status": {
    "allowed": true
  }
}

To disallow access, the service would return:

{
  "apiVersion": "imagepolicy.k8s.io/v1alpha1",
  "kind": "ImageReview",
  "status": {
    "allowed": false,
    "reason": "image currently blacklisted"
  }
}

For further documentation refer to the imagepolicy.v1alpha1 API objects and plugin/pkg/admission/imagepolicy/admission.go.

Extending with Annotations

All annotations on a Pod that match *.image-policy.k8s.io/* are sent to the webhook. Sending annotations allows users who are aware of the image policy backend to send extra information to it, and for different backends implementations to accept different information.

Examples of information you might put here are:

In any case, the annotations are provided by the user and are not validated by Kubernetes in any way. In the future, if an annotation is determined to be widely useful, it may be promoted to a named field of ImageReviewSpec.

Initializers (alpha)

The admission controller determines the initializers of a resource based on the existing InitializerConfigurations. It sets the pending initializers by modifying the metadata of the resource to be created. For more information, please check Dynamic Admission Control.

InitialResources (experimental)

This admission controller observes pod creation requests. If a container omits compute resource requests and limits, then the admission controller auto-populates a compute resource request based on historical usage of containers running the same image. If there is not enough data to make a decision the Request is left unchanged. When the admission controller sets a compute resource request, it does this by annotating the pod spec rather than mutating the container.resources fields. The annotations added contain the information on what compute resources were auto-populated.

See the InitialResources proposal for more details.

LimitPodHardAntiAffinityTopology

This admission controller denies any pod that defines AntiAffinity topology key other than kubernetes.io/hostname in requiredDuringSchedulingRequiredDuringExecution.

LimitRanger

This admission controller will observe the incoming request and ensure that it does not violate any of the constraints enumerated in the LimitRange object in a Namespace. If you are using LimitRange objects in your Kubernetes deployment, you MUST use this admission controller to enforce those constraints. LimitRanger can also be used to apply default resource requests to Pods that don’t specify any; currently, the default LimitRanger applies a 0.1 CPU requirement to all Pods in the default namespace.

See the limitRange design doc and the example of Limit Range for more details.

MutatingAdmissionWebhook (beta in 1.9)

This admission controller calls any mutating webhooks which match the request. Matching webhooks are called in serial; each one may modify the object if it desires.

This admission controller (as implied by the name) only runs in the mutating phase.

If a webhook called by this has side effects (for example, decrementing quota) it must have a reconciliation system, as it is not guaranteed that subsequent webhooks or validating admission controllers will permit the request to finish.

If you disable the MutatingAdmissionWebhook, you must also disable the MutatingWebhookConfiguration object in the admissionregistration.k8s.io/v1beta1 group/version via the --runtime-config flag (both are on by default in versions >= 1.9).

Use caution when authoring and installing mutating webhooks

NamespaceAutoProvision

This admission controller examines all incoming requests on namespaced resources and checks if the referenced namespace does exist. It creates a namespace if it cannot be found. This admission controller is useful in deployments that do not want to restrict creation of a namespace prior to its usage.

NamespaceExists

This admission controller checks all requests on namespaced resources other than Namespace itself. If the namespace referenced from a request doesn’t exist, the request is rejected.

NamespaceLifecycle

This admission controller enforces that a Namespace that is undergoing termination cannot have new objects created in it, and ensures that requests in a non-existent Namespace are rejected. This admission controller also prevents deletion of three system reserved namespaces default, kube-system, kube-public.

A Namespace deletion kicks off a sequence of operations that remove all objects (pods, services, etc.) in that namespace. In order to enforce integrity of that process, we strongly recommend running this admission controller.

NodeRestriction

This admission controller limits the Node and Pod objects a kubelet can modify. In order to be limited by this admission controller, kubelets must use credentials in the system:nodes group, with a username in the form system:node:<nodeName>. Such kubelets will only be allowed to modify their own Node API object, and only modify Pod API objects that are bound to their node. Future versions may add additional restrictions to ensure kubelets have the minimal set of permissions required to operate correctly.

OwnerReferencesPermissionEnforcement

This admission controller protects the access to the metadata.ownerReferences of an object so that only users with “delete” permission to the object can change it. This admission controller also protects the access to metadata.ownerReferences[x].blockOwnerDeletion of an object, so that only users with “update” permission to the finalizers subresource of the referenced owner can change it.

PersistentVolumeLabel (DEPRECATED)

This admission controller automatically attaches region or zone labels to PersistentVolumes as defined by the cloud provider (for example, GCE or AWS). It helps ensure the Pods and the PersistentVolumes mounted are in the same region and/or zone. If the admission controller doesn’t support automatic labelling your PersistentVolumes, you may need to add the labels manually to prevent pods from mounting volumes from a different zone. PersistentVolumeLabel is DEPRECATED and labeling persistent volumes has been taken over by cloud controller manager.

PodNodeSelector

This admission controller defaults and limits what node selectors may be used within a namespace by reading a namespace annotation and a global configuration.

Configuration File Format

PodNodeSelector uses a configuration file to set options for the behavior of the backend. Note that the configuration file format will move to a versioned file in a future release. This file may be json or yaml and has the following format:

podNodeSelectorPluginConfig:
 clusterDefaultNodeSelector: <node-selectors-labels>
 namespace1: <node-selectors-labels>
 namespace2: <node-selectors-labels>

Reference the PodNodeSelector configuration file from the file provided to the API server’s command line flag --admission-control-config-file:

kind: AdmissionConfiguration
apiVersion: apiserver.k8s.io/v1alpha1
plugins:
- name: PodNodeSelector
  path: podnodeselector.yaml
...

Configuration Annotation Format

PodNodeSelector uses the annotation key scheduler.alpha.kubernetes.io/node-selector to assign node selectors to namespaces.

apiVersion: v1
kind: Namespace
metadata:
  annotations:
    scheduler.alpha.kubernetes.io/node-selector: <node-selectors-labels>
  name: namespace3

Internal Behavior

This admission controller has the following behavior:

  1. If the Namespace has an annotation with a key scheduler.alpha.kubernetes.io/node-selector, use its value as the node selector.
  2. If the namespace lacks such an annotation, use the clusterDefaultNodeSelector defined in the PodNodeSelector plugin configuration file as the node selector.
  3. Evaluate the pod’s node selector against the namespace node selector for conflicts. Conflicts result in rejection.
  4. Evaluate the pod’s node selector against the namespace-specific whitelist defined the plugin configuration file. Conflicts result in rejection.
Note: PodNodeSelector allows forcing pods to run on specifically labeled nodes. Also see the PodTolerationRestriction admission plugin, which allows preventing pods from running on specifically tainted nodes.

PersistentVolumeClaimResize

This admission controller implements additional validations for checking incoming PersistentVolumeClaim resize requests.

Note: Support for volume resizing is available as an alpha feature. Admins must set the feature gate ExpandPersistentVolumes to true to enable resizing.

After enabling the ExpandPersistentVolumes feature gate, enabling the PersistentVolumeClaimResize admission controller is recommended, too. This admission controller prevents resizing of all claims by default unless a claim’s StorageClass explicitly enables resizing by setting allowVolumeExpansion to true.

For example: all PersistentVolumeClaims created from the following StorageClass support volume expansion:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: gluster-vol-default
provisioner: kubernetes.io/glusterfs
parameters:
  resturl: "http://192.168.10.100:8080"
  restuser: ""
  secretNamespace: ""
  secretName: ""
allowVolumeExpansion: true

For more information about persistent volume claims, see PersistentVolumeClaims.

PodPreset

This admission controller injects a pod with the fields specified in a matching PodPreset. See also PodPreset concept and Inject Information into Pods Using a PodPreset for more information.

PodSecurityPolicy

This admission controller acts on creation and modification of the pod and determines if it should be admitted based on the requested security context and the available Pod Security Policies.

For Kubernetes < 1.6.0, the API Server must enable the extensions/v1beta1/podsecuritypolicy API extensions group (--runtime-config=extensions/v1beta1/podsecuritypolicy=true).

See also Pod Security Policy documentation for more information.

PodTolerationRestriction

This admission controller first verifies any conflict between a pod’s tolerations and its namespace’s tolerations, and rejects the pod request if there is a conflict. It then merges the namespace’s tolerations into the pod’s tolerations. The resulting tolerations are checked against the namespace’s whitelist of tolerations. If the check succeeds, the pod request is admitted otherwise rejected.

If the pod’s namespace does not have any associated default or whitelist of tolerations, then the cluster-level default or whitelist of tolerations are used instead if specified.

Tolerations to a namespace are assigned via the scheduler.alpha.kubernetes.io/defaultTolerations and scheduler.alpha.kubernetes.io/tolerationsWhitelist annotation keys.

Priority

The priority admission controller uses the priorityClassName field and populates the integer value of the priority. If the priority class is not found, the Pod is rejected.

ResourceQuota

This admission controller will observe the incoming request and ensure that it does not violate any of the constraints enumerated in the ResourceQuota object in a Namespace. If you are using ResourceQuota objects in your Kubernetes deployment, you MUST use this admission controller to enforce quota constraints.

See the resourceQuota design doc and the example of Resource Quota for more details.

SecurityContextDeny

This admission controller will deny any pod that attempts to set certain escalating SecurityContext fields. This should be enabled if a cluster doesn’t utilize pod security policies to restrict the set of values a security context can take.

ServiceAccount

This admission controller implements automation for serviceAccounts. We strongly recommend using this admission controller if you intend to make use of Kubernetes ServiceAccount objects.

StorageObjectInUseProtection (beta)

FEATURE STATE: Kubernetes v1.10 beta
This feature is currently in a beta state, meaning:

  • The version names contain beta (e.g. v2beta3).
  • Code is well tested. Enabling the feature is considered safe. Enabled by default.
  • Support for the overall feature will not be dropped, though details may change.
  • The schema and/or semantics of objects may change in incompatible ways in a subsequent beta or stable release. When this happens, we will provide instructions for migrating to the next version. This may require deleting, editing, and re-creating API objects. The editing process may require some thought. This may require downtime for applications that rely on the feature.
  • Recommended for only non-business-critical uses because of potential for incompatible changes in subsequent releases. If you have multiple clusters that can be upgraded independently, you may be able to relax this restriction.
  • Please do try our beta features and give feedback on them! After they exit beta, it may not be practical for us to make more changes.

The StorageObjectInUseProtection plugin adds the kubernetes.io/pvc-protection or kubernetes.io/pv-protection finalizers to newly created Persistent Volume Claims (PVCs) or Persistent Volumes (PV). In case a user deletes a PVC or PV the PVC or PV is not removed until the finalizer is removed from the PVC or PV by PVC or PV Protection Controller. Refer to the Storage Object in Use Protection for more detailed information.

ValidatingAdmissionWebhook (alpha in 1.8; beta in 1.9)

This admission controller calls any validating webhooks which match the request. Matching webhooks are called in parallel; if any of them rejects the request, the request fails. This admission controller only runs in the validation phase; the webhooks it calls may not mutate the object, as opposed to the webhooks called by the MutatingAdmissionWebhook admission controller.

If a webhook called by this has side effects (for example, decrementing quota) it must have a reconciliation system, as it is not guaranteed that subsequent webhooks or other validating admission controllers will permit the request to finish.

If you disable the ValidatingAdmissionWebhook, you must also disable the ValidatingWebhookConfiguration object in the admissionregistration.k8s.io/v1beta1 group/version via the --runtime-config flag (both are on by default in versions 1.9 and later).

Yes.

For Kubernetes version 1.10 and later, we recommend running the following set of admission controllers using the --enable-admission-plugins flag (order doesn’t matter).

Note: --admission-control was deprecated in 1.10 and replaced with --enable-admission-plugins.
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuota

For Kubernetes 1.9 and earlier, we recommend running the following set of admission controllers using the --admission-control flag (order matters).

  --admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuota
  --admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,PersistentVolumeLabel,DefaultStorageClass,ResourceQuota,DefaultTolerationSeconds
  --admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota
  --admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota
  --admission-control=NamespaceLifecycle,LimitRanger,SecurityContextDeny,ServiceAccount,PersistentVolumeLabel,ResourceQuota

Analytics

Create an Issue Edit this Page