1 - Example: Configuring a Java Microservice

1.1 - Externalizing config using MicroProfile, ConfigMaps and Secrets

In this tutorial you will learn how and why to externalize your microservice’s configuration. Specifically, you will learn how to use Kubernetes ConfigMaps and Secrets to set environment variables and then consume them using MicroProfile Config.

Before you begin

Creating Kubernetes ConfigMaps & Secrets

There are several ways to set environment variables for a Docker container in Kubernetes, including: Dockerfile, kubernetes.yml, Kubernetes ConfigMaps, and Kubernetes Secrets. In the tutorial, you will learn how to use the latter two for setting your environment variables whose values will be injected into your microservices. One of the benefits for using ConfigMaps and Secrets is that they can be re-used across multiple containers, including being assigned to different environment variables for the different containers.

ConfigMaps are API Objects that store non-confidential key-value pairs. In the Interactive Tutorial you will learn how to use a ConfigMap to store the application's name. For more information regarding ConfigMaps, you can find the documentation here.

Although Secrets are also used to store key-value pairs, they differ from ConfigMaps in that they're intended for confidential/sensitive information and are stored using Base64 encoding. This makes secrets the appropriate choice for storing such things as credentials, keys, and tokens, the former of which you'll do in the Interactive Tutorial. For more information on Secrets, you can find the documentation here.

Externalizing Config from Code

Externalized application configuration is useful because configuration usually changes depending on your environment. In order to accomplish this, we'll use Java's Contexts and Dependency Injection (CDI) and MicroProfile Config. MicroProfile Config is a feature of MicroProfile, a set of open Java technologies for developing and deploying cloud-native microservices.

CDI provides a standard dependency injection capability enabling an application to be assembled from collaborating, loosely-coupled beans. MicroProfile Config provides apps and microservices a standard way to obtain config properties from various sources, including the application, runtime, and environment. Based on the source's defined priority, the properties are automatically combined into a single set of properties that the application can access via an API. Together, CDI & MicroProfile will be used in the Interactive Tutorial to retrieve the externally provided properties from the Kubernetes ConfigMaps and Secrets and get injected into your application code.

Many open source frameworks and runtimes implement and support MicroProfile Config. Throughout the interactive tutorial, you'll be using Open Liberty, a flexible open-source Java runtime for building and running cloud-native apps and microservices. However, any MicroProfile compatible runtime could be used instead.

Objectives

  • Create a Kubernetes ConfigMap and Secret
  • Inject microservice configuration using MicroProfile Config

Example: Externalizing config using MicroProfile, ConfigMaps and Secrets

Start Interactive Tutorial

2 - Updating Configuration via a ConfigMap

This page provides a step-by-step example of updating configuration within a Pod via a ConfigMap and builds upon the Configure a Pod to Use a ConfigMap task.
At the end of this tutorial, you will understand how to change the configuration for a running application.
This tutorial uses the alpine and nginx images as examples.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you can use one of these Kubernetes playgrounds:

You need to have the curl command-line tool for making HTTP requests from the terminal or command prompt. If you do not have curl available, you can install it. Check the documentation for your local operating system.

Objectives

  • Update configuration via a ConfigMap mounted as a Volume
  • Update environment variables of a Pod via a ConfigMap
  • Update configuration via a ConfigMap in a multi-container Pod
  • Update configuration via a ConfigMap in a Pod possessing a Sidecar Container

Update configuration via a ConfigMap mounted as a Volume

Use the kubectl create configmap command to create a ConfigMap from literal values:

kubectl create configmap sport --from-literal=sport=football

Below is an example of a Deployment manifest with the ConfigMap sport mounted as a volume into the Pod's only container.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: configmap-volume
  labels:
    app.kubernetes.io/name: configmap-volume
spec:
  replicas: 3
  selector:
    matchLabels:
      app.kubernetes.io/name: configmap-volume
  template:
    metadata:
      labels:
        app.kubernetes.io/name: configmap-volume
    spec:
      containers:
        - name: alpine
          image: alpine:3
          command:
            - /bin/sh
            - -c
            - while true; do echo "$(date) My preferred sport is $(cat /etc/config/sport)";
              sleep 10; done;
          ports:
            - containerPort: 80
          volumeMounts:
            - name: config-volume
              mountPath: /etc/config
      volumes:
        - name: config-volume
          configMap:
            name: sport

Create the Deployment:

kubectl apply -f https://k8s.io/examples/deployments/deployment-with-configmap-as-volume.yaml

Check the pods for this Deployment to ensure they are ready (matching by selector):

kubectl get pods --selector=app.kubernetes.io/name=configmap-volume

You should see an output similar to:

NAME                                READY   STATUS    RESTARTS   AGE
configmap-volume-6b976dfdcf-qxvbm   1/1     Running   0          72s
configmap-volume-6b976dfdcf-skpvm   1/1     Running   0          72s
configmap-volume-6b976dfdcf-tbc6r   1/1     Running   0          72s

On each node where one of these Pods is running, the kubelet fetches the data for that ConfigMap and translates it to files in a local volume. The kubelet then mounts that volume into the container, as specified in the Pod template. The code running in that container loads the information from the file and uses it to print a report to stdout. You can check this report by viewing the logs for one of the Pods in that Deployment:

# Pick one Pod that belongs to the Deployment, and view its logs
kubectl logs deployments/configmap-volume

You should see an output similar to:

Found 3 pods, using pod/configmap-volume-76d9c5678f-x5rgj
Thu Jan  4 14:06:46 UTC 2024 My preferred sport is football
Thu Jan  4 14:06:56 UTC 2024 My preferred sport is football
Thu Jan  4 14:07:06 UTC 2024 My preferred sport is football
Thu Jan  4 14:07:16 UTC 2024 My preferred sport is football
Thu Jan  4 14:07:26 UTC 2024 My preferred sport is football

Edit the ConfigMap:

kubectl edit configmap sport

In the editor that appears, change the value of key sport from football to cricket. Save your changes. The kubectl tool updates the ConfigMap accordingly (if you see an error, try again).

Here's an example of how that manifest could look after you edit it:

apiVersion: v1
data:
  sport: cricket
kind: ConfigMap
# You can leave the existing metadata as they are.
# The values you'll see won't exactly match these.
metadata:
  creationTimestamp: "2024-01-04T14:05:06Z"
  name: sport
  namespace: default
  resourceVersion: "1743935"
  uid: 024ee001-fe72-487e-872e-34d6464a8a23

You should see the following output:

configmap/sport edited

Tail (follow the latest entries in) the logs of one of the pods that belongs to this Deployment:

kubectl logs deployments/configmap-volume --follow

After few seconds, you should see the log output change as follows:

Thu Jan  4 14:11:36 UTC 2024 My preferred sport is football
Thu Jan  4 14:11:46 UTC 2024 My preferred sport is football
Thu Jan  4 14:11:56 UTC 2024 My preferred sport is football
Thu Jan  4 14:12:06 UTC 2024 My preferred sport is cricket
Thu Jan  4 14:12:16 UTC 2024 My preferred sport is cricket

When you have a ConfigMap that is mapped into a running Pod using either a configMap volume or a projected volume, and you update that ConfigMap, the running Pod sees the update almost immediately.
However, your application only sees the change if it is written to either poll for changes, or watch for file updates.
An application that loads its configuration once at startup will not notice a change.

Update environment variables of a Pod via a ConfigMap

Use the kubectl create configmap command to create a ConfigMap from literal values:

kubectl create configmap fruits --from-literal=fruits=apples

Below is an example of a Deployment manifest with an environment variable configured via the ConfigMap fruits.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: configmap-env-var
  labels:
    app.kubernetes.io/name: configmap-env-var
spec:
  replicas: 3
  selector:
    matchLabels:
      app.kubernetes.io/name: configmap-env-var
  template:
    metadata:
      labels:
        app.kubernetes.io/name: configmap-env-var
    spec:
      containers:
        - name: alpine
          image: alpine:3
          env:
            - name: FRUITS
              valueFrom:
                configMapKeyRef:
                  key: fruits
                  name: fruits
          command:
            - /bin/sh
            - -c
            - while true; do echo "$(date) The basket is full of $FRUITS";
                sleep 10; done;
          ports:
            - containerPort: 80

Create the Deployment:

kubectl apply -f https://k8s.io/examples/deployments/deployment-with-configmap-as-envvar.yaml

Check the pods for this Deployment to ensure they are ready (matching by selector):

kubectl get pods --selector=app.kubernetes.io/name=configmap-env-var

You should see an output similar to:

NAME                                 READY   STATUS    RESTARTS   AGE
configmap-env-var-59cfc64f7d-74d7z   1/1     Running   0          46s
configmap-env-var-59cfc64f7d-c4wmj   1/1     Running   0          46s
configmap-env-var-59cfc64f7d-dpr98   1/1     Running   0          46s

The key-value pair in the ConfigMap is configured as an environment variable in the container of the Pod. Check this by viewing the logs of one Pod that belongs to the Deployment.

kubectl logs deployment/configmap-env-var

You should see an output similar to:

Found 3 pods, using pod/configmap-env-var-7c994f7769-l74nq
Thu Jan  4 16:07:06 UTC 2024 The basket is full of apples
Thu Jan  4 16:07:16 UTC 2024 The basket is full of apples
Thu Jan  4 16:07:26 UTC 2024 The basket is full of apples

Edit the ConfigMap:

kubectl edit configmap fruits

In the editor that appears, change the value of key fruits from apples to mangoes. Save your changes. The kubectl tool updates the ConfigMap accordingly (if you see an error, try again).

Here's an example of how that manifest could look after you edit it:

apiVersion: v1
data:
  fruits: mangoes
kind: ConfigMap
# You can leave the existing metadata as they are.
# The values you'll see won't exactly match these.
metadata:
  creationTimestamp: "2024-01-04T16:04:19Z"
  name: fruits
  namespace: default
  resourceVersion: "1749472"

You should see the following output:

configmap/fruits edited

Tail the logs of the Deployment and observe the output for few seconds:

# As the text explains, the output does NOT change
kubectl logs deployments/configmap-env-var --follow

Notice that the output remains unchanged, even though you edited the ConfigMap:

Thu Jan  4 16:12:56 UTC 2024 The basket is full of apples
Thu Jan  4 16:13:06 UTC 2024 The basket is full of apples
Thu Jan  4 16:13:16 UTC 2024 The basket is full of apples
Thu Jan  4 16:13:26 UTC 2024 The basket is full of apples

You can trigger that replacement. Perform a rollout for the Deployment, using kubectl rollout:

# Trigger the rollout
kubectl rollout restart deployment configmap-env-var

# Wait for the rollout to complete
kubectl rollout status deployment configmap-env-var --watch=true

Next, check the Deployment:

kubectl get deployment configmap-env-var

You should see an output similar to:

NAME                READY   UP-TO-DATE   AVAILABLE   AGE
configmap-env-var   3/3     3            3           12m

Check the Pods:

kubectl get pods --selector=app.kubernetes.io/name=configmap-env-var

The rollout causes Kubernetes to make a new ReplicaSet for the Deployment; that means the existing Pods eventually terminate, and new ones are created. After few seconds, you should see an output similar to:

NAME                                 READY   STATUS        RESTARTS   AGE
configmap-env-var-6d94d89bf5-2ph2l   1/1     Running       0          13s
configmap-env-var-6d94d89bf5-74twx   1/1     Running       0          8s
configmap-env-var-6d94d89bf5-d5vx8   1/1     Running       0          11s

View the logs for a Pod in this Deployment:

# Pick one Pod that belongs to the Deployment, and view its logs
kubectl logs deployment/configmap-env-var

You should see an output similar to the below:

Found 3 pods, using pod/configmap-env-var-6d9ff89fb6-bzcf6
Thu Jan  4 16:30:35 UTC 2024 The basket is full of mangoes
Thu Jan  4 16:30:45 UTC 2024 The basket is full of mangoes
Thu Jan  4 16:30:55 UTC 2024 The basket is full of mangoes

This demonstrates the scenario of updating environment variables in a Pod that are derived from a ConfigMap. Changes to the ConfigMap values are applied to the Pod during the subsequent rollout. If Pods get created for another reason, such as scaling up the Deployment, then the new Pods also use the latest configuration values; if you don't trigger a rollout, then you might find that your app is running with a mix of old and new environment variable values.

Update configuration via a ConfigMap in a multi-container Pod

Use the kubectl create configmap command to create a ConfigMap from literal values:

kubectl create configmap color --from-literal=color=red

Below is an example manifest for a Deployment that manages a set of Pods, each with two containers. The two containers share an emptyDir volume that they use to communicate. The first container runs a web server (nginx). The mount path for the shared volume in the web server container is /usr/share/nginx/html. The second helper container is based on alpine, and for this container the emptyDir volume is mounted at /pod-data. The helper container writes a file in HTML that has its content based on a ConfigMap. The web server container serves the HTML via HTTP.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: configmap-two-containers
  labels:
    app.kubernetes.io/name: configmap-two-containers
spec:
  replicas: 3
  selector:
    matchLabels:
      app.kubernetes.io/name: configmap-two-containers
  template:
    metadata:
      labels:
        app.kubernetes.io/name: configmap-two-containers
    spec:
      volumes:
        - name: shared-data
          emptyDir: {}
        - name: config-volume
          configMap:
            name: color
      containers:
        - name: nginx
          image: nginx
          volumeMounts:
            - name: shared-data
              mountPath: /usr/share/nginx/html
        - name: alpine
          image: alpine:3
          volumeMounts:
            - name: shared-data
              mountPath: /pod-data
            - name: config-volume
              mountPath: /etc/config
          command:
            - /bin/sh
            - -c
            - while true; do echo "$(date) My preferred color is $(cat /etc/config/color)" > /pod-data/index.html;
              sleep 10; done;

Create the Deployment:

kubectl apply -f https://k8s.io/examples/deployments/deployment-with-configmap-two-containers.yaml

Check the pods for this Deployment to ensure they are ready (matching by selector):

kubectl get pods --selector=app.kubernetes.io/name=configmap-two-containers

You should see an output similar to:

NAME                                        READY   STATUS    RESTARTS   AGE
configmap-two-containers-565fb6d4f4-2xhxf   2/2     Running   0          20s
configmap-two-containers-565fb6d4f4-g5v4j   2/2     Running   0          20s
configmap-two-containers-565fb6d4f4-mzsmf   2/2     Running   0          20s

Expose the Deployment (the kubectl tool creates a Service for you):

kubectl expose deployment configmap-two-containers --name=configmap-service --port=8080 --target-port=80

Use kubectl to forward the port:

# this stays running in the background
kubectl port-forward service/configmap-service 8080:8080 &

Access the service.

curl http://localhost:8080

You should see an output similar to:

Fri Jan  5 08:08:22 UTC 2024 My preferred color is red

Edit the ConfigMap:

kubectl edit configmap color

In the editor that appears, change the value of key color from red to blue. Save your changes. The kubectl tool updates the ConfigMap accordingly (if you see an error, try again).

Here's an example of how that manifest could look after you edit it:

apiVersion: v1
data:
  color: blue
kind: ConfigMap
# You can leave the existing metadata as they are.
# The values you'll see won't exactly match these.
metadata:
  creationTimestamp: "2024-01-05T08:12:05Z"
  name: color
  namespace: configmap
  resourceVersion: "1801272"
  uid: 80d33e4a-cbb4-4bc9-ba8c-544c68e425d6

Loop over the service URL for few seconds.

# Cancel this when you're happy with it (Ctrl-C)
while true; do curl --connect-timeout 7.5 http://localhost:8080; sleep 10; done

You should see the output change as follows:

Fri Jan  5 08:14:00 UTC 2024 My preferred color is red
Fri Jan  5 08:14:02 UTC 2024 My preferred color is red
Fri Jan  5 08:14:20 UTC 2024 My preferred color is red
Fri Jan  5 08:14:22 UTC 2024 My preferred color is red
Fri Jan  5 08:14:32 UTC 2024 My preferred color is blue
Fri Jan  5 08:14:43 UTC 2024 My preferred color is blue
Fri Jan  5 08:15:00 UTC 2024 My preferred color is blue

Update configuration via a ConfigMap in a Pod possessing a sidecar container

The above scenario can be replicated by using a Sidecar Container as a helper container to write the HTML file.
As a Sidecar Container is conceptually an Init Container, it is guaranteed to start before the main web server container.
This ensures that the HTML file is always available when the web server is ready to serve it.
Please see Enabling sidecar containers to utilize this feature.

If you are continuing from the previous scenario, you can reuse the ConfigMap named color for this scenario.
If you are executing this scenario independently, use the kubectl create configmap command to create a ConfigMap from literal values:

kubectl create configmap color --from-literal=color=blue

Below is an example manifest for a Deployment that manages a set of Pods, each with a main container and a sidecar container. The two containers share an emptyDir volume that they use to communicate. The main container runs a web server (NGINX). The mount path for the shared volume in the web server container is /usr/share/nginx/html. The second container is a Sidecar Container based on Alpine Linux which acts as a helper container. For this container the emptyDir volume is mounted at /pod-data. The Sidecar Container writes a file in HTML that has its content based on a ConfigMap. The web server container serves the HTML via HTTP.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: configmap-sidecar-container
  labels:
    app.kubernetes.io/name: configmap-sidecar-container
spec:
  replicas: 3
  selector:
    matchLabels:
      app.kubernetes.io/name: configmap-sidecar-container
  template:
    metadata:
      labels:
        app.kubernetes.io/name: configmap-sidecar-container
    spec:
      volumes:
        - name: shared-data
          emptyDir: {}
        - name: config-volume
          configMap:
            name: color
      containers:
        - name: nginx
          image: nginx
          volumeMounts:
            - name: shared-data
              mountPath: /usr/share/nginx/html
      initContainers:
        - name: alpine
          image: alpine:3
          restartPolicy: Always
          volumeMounts:
            - name: shared-data
              mountPath: /pod-data
            - name: config-volume
              mountPath: /etc/config
          command:
            - /bin/sh
            - -c
            - while true; do echo "$(date) My preferred color is $(cat /etc/config/color)" > /pod-data/index.html;
              sleep 10; done;

Create the Deployment:

kubectl apply -f https://k8s.io/examples/deployments/deployment-with-configmap-and-sidecar-container.yaml

Check the pods for this Deployment to ensure they are ready (matching by selector):

kubectl get pods --selector=app.kubernetes.io/name=configmap-sidecar-container

You should see an output similar to:

NAME                                           READY   STATUS    RESTARTS   AGE
configmap-sidecar-container-5fb59f558b-87rp7   2/2     Running   0          94s
configmap-sidecar-container-5fb59f558b-ccs7s   2/2     Running   0          94s
configmap-sidecar-container-5fb59f558b-wnmgk   2/2     Running   0          94s

Expose the Deployment (the kubectl tool creates a Service for you):

kubectl expose deployment configmap-sidecar-container --name=configmap-sidecar-service --port=8081 --target-port=80

Use kubectl to forward the port:

# this stays running in the background
kubectl port-forward service/configmap-sidecar-service 8081:8081 &

Access the service.

curl http://localhost:8081

You should see an output similar to:

Sat Feb 17 13:09:05 UTC 2024 My preferred color is blue

Edit the ConfigMap:

kubectl edit configmap color

In the editor that appears, change the value of key color from blue to green. Save your changes. The kubectl tool updates the ConfigMap accordingly (if you see an error, try again).

Here's an example of how that manifest could look after you edit it:

apiVersion: v1
data:
  color: green
kind: ConfigMap
# You can leave the existing metadata as they are.
# The values you'll see won't exactly match these.
metadata:
  creationTimestamp: "2024-02-17T12:20:30Z"
  name: color
  namespace: default
  resourceVersion: "1054"
  uid: e40bb34c-58df-4280-8bea-6ed16edccfaa

Loop over the service URL for few seconds.

# Cancel this when you're happy with it (Ctrl-C)
while true; do curl --connect-timeout 7.5 http://localhost:8081; sleep 10; done

You should see the output change as follows:

Sat Feb 17 13:12:35 UTC 2024 My preferred color is blue
Sat Feb 17 13:12:45 UTC 2024 My preferred color is blue
Sat Feb 17 13:12:55 UTC 2024 My preferred color is blue
Sat Feb 17 13:13:05 UTC 2024 My preferred color is blue
Sat Feb 17 13:13:15 UTC 2024 My preferred color is green
Sat Feb 17 13:13:25 UTC 2024 My preferred color is green
Sat Feb 17 13:13:35 UTC 2024 My preferred color is green

Update configuration via an immutable ConfigMap that is mounted as a volume

An example manifest for an Immutable ConfigMap is shown below.

apiVersion: v1
data:
  company_name: "ACME, Inc." # existing fictional company name
kind: ConfigMap
immutable: true
metadata:
  name: company-name-20150801

Create the Immutable ConfigMap:

kubectl apply -f https://k8s.io/examples/configmap/immutable-configmap.yaml

Below is an example of a Deployment manifest with the Immutable ConfigMap company-name-20150801 mounted as a volume into the Pod's only container.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: immutable-configmap-volume
  labels:
    app.kubernetes.io/name: immutable-configmap-volume
spec:
  replicas: 3
  selector:
    matchLabels:
      app.kubernetes.io/name: immutable-configmap-volume
  template:
    metadata:
      labels:
        app.kubernetes.io/name: immutable-configmap-volume
    spec:
      containers:
        - name: alpine
          image: alpine:3
          command:
            - /bin/sh
            - -c
            - while true; do echo "$(date) The name of the company is $(cat /etc/config/company_name)";
              sleep 10; done;
          ports:
            - containerPort: 80
          volumeMounts:
            - name: config-volume
              mountPath: /etc/config
      volumes:
        - name: config-volume
          configMap:
            name: company-name-20150801

Create the Deployment:

kubectl apply -f https://k8s.io/examples/deployments/deployment-with-immutable-configmap-as-volume.yaml

Check the pods for this Deployment to ensure they are ready (matching by selector):

kubectl get pods --selector=app.kubernetes.io/name=immutable-configmap-volume

You should see an output similar to:

NAME                                          READY   STATUS    RESTARTS   AGE
immutable-configmap-volume-78b6fbff95-5gsfh   1/1     Running   0          62s
immutable-configmap-volume-78b6fbff95-7vcj4   1/1     Running   0          62s
immutable-configmap-volume-78b6fbff95-vdslm   1/1     Running   0          62s

The Pod's container refers to the data defined in the ConfigMap and uses it to print a report to stdout. You can check this report by viewing the logs for one of the Pods in that Deployment:

# Pick one Pod that belongs to the Deployment, and view its logs
kubectl logs deployments/immutable-configmap-volume

You should see an output similar to:

Found 3 pods, using pod/immutable-configmap-volume-78b6fbff95-5gsfh
Wed Mar 20 03:52:34 UTC 2024 The name of the company is ACME, Inc.
Wed Mar 20 03:52:44 UTC 2024 The name of the company is ACME, Inc.
Wed Mar 20 03:52:54 UTC 2024 The name of the company is ACME, Inc.

Create a new immutable ConfigMap by using the manifest shown below:

apiVersion: v1
data:
  company_name: "Fiktivesunternehmen GmbH" # new fictional company name
kind: ConfigMap
immutable: true
metadata:
  name: company-name-20240312
kubectl apply -f https://k8s.io/examples/configmap/new-immutable-configmap.yaml

You should see an output similar to:

configmap/company-name-20240312 created

Check the newly created ConfigMap:

kubectl get configmap

You should see an output displaying both the old and new ConfigMaps:

NAME                    DATA   AGE
company-name-20150801   1      22m
company-name-20240312   1      24s

Modify the Deployment to reference the new ConfigMap.

Edit the Deployment:

kubectl edit deployment immutable-configmap-volume

In the editor that appears, update the existing volume definition to use the new ConfigMap.

volumes:
- configMap:
    defaultMode: 420
    name: company-name-20240312 # Update this field
  name: config-volume

You should see the following output:

deployment.apps/immutable-configmap-volume edited

This will trigger a rollout. Wait for all the previous Pods to terminate and the new Pods to be in a ready state.

Monitor the status of the Pods:

kubectl get pods --selector=app.kubernetes.io/name=immutable-configmap-volume
NAME                                          READY   STATUS        RESTARTS   AGE
immutable-configmap-volume-5fdb88fcc8-29v8n   1/1     Running       0          13s
immutable-configmap-volume-5fdb88fcc8-52ddd   1/1     Running       0          14s
immutable-configmap-volume-5fdb88fcc8-n5jx4   1/1     Running       0          15s
immutable-configmap-volume-78b6fbff95-5gsfh   1/1     Terminating   0          32m
immutable-configmap-volume-78b6fbff95-7vcj4   1/1     Terminating   0          32m
immutable-configmap-volume-78b6fbff95-vdslm   1/1     Terminating   0          32m

You should eventually see an output similar to:

NAME                                          READY   STATUS    RESTARTS   AGE
immutable-configmap-volume-5fdb88fcc8-29v8n   1/1     Running   0          43s
immutable-configmap-volume-5fdb88fcc8-52ddd   1/1     Running   0          44s
immutable-configmap-volume-5fdb88fcc8-n5jx4   1/1     Running   0          45s

View the logs for a Pod in this Deployment:

# Pick one Pod that belongs to the Deployment, and view its logs
kubectl logs deployment/immutable-configmap-volume

You should see an output similar to the below:

Found 3 pods, using pod/immutable-configmap-volume-5fdb88fcc8-n5jx4
Wed Mar 20 04:24:17 UTC 2024 The name of the company is Fiktivesunternehmen GmbH
Wed Mar 20 04:24:27 UTC 2024 The name of the company is Fiktivesunternehmen GmbH
Wed Mar 20 04:24:37 UTC 2024 The name of the company is Fiktivesunternehmen GmbH

Once all the deployments have migrated to use the new immutable ConfigMap, it is advised to delete the old one.

kubectl delete configmap company-name-20150801

Summary

Changes to a ConfigMap mounted as a Volume on a Pod are available seamlessly after the subsequent kubelet sync.

Changes to a ConfigMap that configures environment variables for a Pod are available after the subsequent rollout for the Pod.

Once a ConfigMap is marked as immutable, it is not possible to revert this change (you cannot make an immutable ConfigMap mutable), and you also cannot make any change to the contents of the data or the binaryData field. You can delete and recreate the ConfigMap, or you can make a new different ConfigMap. When you delete a ConfigMap, running containers and their Pods maintain a mount point to any volume that referenced that existing ConfigMap.

Cleaning up

Terminate the kubectl port-forward commands in case they are running.

Delete the resources created during the tutorial:

kubectl delete deployment configmap-volume configmap-env-var configmap-two-containers configmap-sidecar-container immutable-configmap-volume
kubectl delete service configmap-service configmap-sidecar-service
kubectl delete configmap sport fruits color company-name-20240312

kubectl delete configmap company-name-20150801 # In case it was not handled during the task execution

3 - Configuring Redis using a ConfigMap

This page provides a real world example of how to configure Redis using a ConfigMap and builds upon the Configure a Pod to Use a ConfigMap task.

Objectives

  • Create a ConfigMap with Redis configuration values
  • Create a Redis Pod that mounts and uses the created ConfigMap
  • Verify that the configuration was correctly applied.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you can use one of these Kubernetes playgrounds:

To check the version, enter kubectl version.

Real World Example: Configuring Redis using a ConfigMap

Follow the steps below to configure a Redis cache using data stored in a ConfigMap.

First create a ConfigMap with an empty configuration block:

cat <<EOF >./example-redis-config.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: example-redis-config
data:
  redis-config: ""
EOF

Apply the ConfigMap created above, along with a Redis pod manifest:

kubectl apply -f example-redis-config.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes/website/main/content/en/examples/pods/config/redis-pod.yaml

Examine the contents of the Redis pod manifest and note the following:

  • A volume named config is created by spec.volumes[1]
  • The key and path under spec.volumes[1].configMap.items[0] exposes the redis-config key from the example-redis-config ConfigMap as a file named redis.conf on the config volume.
  • The config volume is then mounted at /redis-master by spec.containers[0].volumeMounts[1].

This has the net effect of exposing the data in data.redis-config from the example-redis-config ConfigMap above as /redis-master/redis.conf inside the Pod.

apiVersion: v1
kind: Pod
metadata:
  name: redis
spec:
  containers:
  - name: redis
    image: redis:5.0.4
    command:
      - redis-server
      - "/redis-master/redis.conf"
    env:
    - name: MASTER
      value: "true"
    ports:
    - containerPort: 6379
    resources:
      limits:
        cpu: "0.1"
    volumeMounts:
    - mountPath: /redis-master-data
      name: data
    - mountPath: /redis-master
      name: config
  volumes:
    - name: data
      emptyDir: {}
    - name: config
      configMap:
        name: example-redis-config
        items:
        - key: redis-config
          path: redis.conf

Examine the created objects:

kubectl get pod/redis configmap/example-redis-config 

You should see the following output:

NAME        READY   STATUS    RESTARTS   AGE
pod/redis   1/1     Running   0          8s

NAME                             DATA   AGE
configmap/example-redis-config   1      14s

Recall that we left redis-config key in the example-redis-config ConfigMap blank:

kubectl describe configmap/example-redis-config

You should see an empty redis-config key:

Name:         example-redis-config
Namespace:    default
Labels:       <none>
Annotations:  <none>

Data
====
redis-config:

Use kubectl exec to enter the pod and run the redis-cli tool to check the current configuration:

kubectl exec -it redis -- redis-cli

Check maxmemory:

127.0.0.1:6379> CONFIG GET maxmemory

It should show the default value of 0:

1) "maxmemory"
2) "0"

Similarly, check maxmemory-policy:

127.0.0.1:6379> CONFIG GET maxmemory-policy

Which should also yield its default value of noeviction:

1) "maxmemory-policy"
2) "noeviction"

Now let's add some configuration values to the example-redis-config ConfigMap:

apiVersion: v1
kind: ConfigMap
metadata:
  name: example-redis-config
data:
  redis-config: |
    maxmemory 2mb
    maxmemory-policy allkeys-lru    

Apply the updated ConfigMap:

kubectl apply -f example-redis-config.yaml

Confirm that the ConfigMap was updated:

kubectl describe configmap/example-redis-config

You should see the configuration values we just added:

Name:         example-redis-config
Namespace:    default
Labels:       <none>
Annotations:  <none>

Data
====
redis-config:
----
maxmemory 2mb
maxmemory-policy allkeys-lru

Check the Redis Pod again using redis-cli via kubectl exec to see if the configuration was applied:

kubectl exec -it redis -- redis-cli

Check maxmemory:

127.0.0.1:6379> CONFIG GET maxmemory

It remains at the default value of 0:

1) "maxmemory"
2) "0"

Similarly, maxmemory-policy remains at the noeviction default setting:

127.0.0.1:6379> CONFIG GET maxmemory-policy

Returns:

1) "maxmemory-policy"
2) "noeviction"

The configuration values have not changed because the Pod needs to be restarted to grab updated values from associated ConfigMaps. Let's delete and recreate the Pod:

kubectl delete pod redis
kubectl apply -f https://raw.githubusercontent.com/kubernetes/website/main/content/en/examples/pods/config/redis-pod.yaml

Now re-check the configuration values one last time:

kubectl exec -it redis -- redis-cli

Check maxmemory:

127.0.0.1:6379> CONFIG GET maxmemory

It should now return the updated value of 2097152:

1) "maxmemory"
2) "2097152"

Similarly, maxmemory-policy has also been updated:

127.0.0.1:6379> CONFIG GET maxmemory-policy

It now reflects the desired value of allkeys-lru:

1) "maxmemory-policy"
2) "allkeys-lru"

Clean up your work by deleting the created resources:

kubectl delete pod/redis configmap/example-redis-config

What's next

4 - Adopting Sidecar Containers

This section is relevant for people adopting a new built-in sidecar containers feature for their workloads.

Sidecar containers is not a new concept as posted in the blog post. Kubernetes allowed to run multiple containers in a Pod to implement this concept. However, running sidecar container as a regular container has a lot of limitations being fixed with the new built-in sidecar containers support.

FEATURE STATE: Kubernetes v1.29 [beta]

Objectives

  • Understand the need for sidecar containers
  • Be able to troubleshoot issues with the sidecar containers
  • Understand options to universally "inject" sidecar containers to any workload

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you can use one of these Kubernetes playgrounds:

Your Kubernetes server must be at or later than version 1.29. To check the version, enter kubectl version.

Sidecar containers overview

Sidecar containers are the secondary containers that run along with the main application container within the same Pod. These containers are used to enhance or to extend the functionality of the primary app container by providing additional services, or functionality such as logging, monitoring, security, or data synchronization, without directly altering the primary application code. You can read more in the Sidecar containers concept page.

The concept of sidecar containers is not new and there are multiple implementation of this concept. As well as sidecar containers that you, the person defining the Pod, want to run, you can also find that some addons modify Pods - before the Pods start running - so that there are extra sidecar containers. The mechanisms to inject those extra sidecars are often mutating webhooks. For example, a service mesh addon might inject a sidecar that configures mutual TLS and encryption in transit between different Pods.

While the concept of sidecar containers is not new, the native implementation of this feature in Kubernetes, however, is new. And as with every new feature, adopting this feature may present certain challenges.

This tutorial explore challenges and solution can be experienced by end users as well as by authors of sidecar containers.

Benefits of a built-in sidecar containers

Using Kubernetes' native support for sidecar containers provides several benefits:

  1. You can configure a native sidecar container to start ahead of init containers.
  2. The built-in sidecar containers can be authored to guarantee that they are terminated last. Sidecar containers are terminated with a SIGTERM signal once all the regular containers are completed and terminated. If the sidecar container isn’t gracefully shut down, a SIGKILL signal will be used to terminate it.
  3. With Jobs, when Pod's restartPolicy: OnFailure or restartPolicy: Never, native sidecar containers do not block Pod completion. With legacy sidecar containers, special care is needed to handle this situation.
  4. Also, with Jobs, built-in sidecar containers would keep being restarted once they are done, even if regular containers would not with Pod's restartPolicy: Never.

Adopting built-in sidecar containers

The SidecarContainers feature gate is in beta state starting from Kubernetes version 1.29 and is enabled by default. Some clusters may have this feature disabled or have software installed that is incompatible with the feature.

When this happens, the Pod may be rejected or the sidecar containers may block Pod startup, rendering the Pod useless. This condition is easy to detect as Pod simply get stuck on initialization. However, it is rarely clear what caused the problem.

Here are the considerations and troubleshooting steps that one can take while adopting sidecar containers for their workload.

Ensure the feature gate is enabled

As a very first step, make sure that both - API server and Nodes are at Kubernetes version v1.29 or later. The feature will break on clusters where Nodes are running earlier versions where it is not enabled.

You should ensure that the feature gate is enabled for the API server(s) within the control plane and for all nodes.

One of the ways to check the feature gate enablement is running a command like this:

  • For API Server kubectl get --raw /metrics | grep kubernetes_feature_enabled | grep SidecarContainers
  • For the individual node: kubectl get --raw /api/v1/nodes/<node-name>/proxy/metrics | grep kubernetes_feature_enabled | grep SidecarContainers

If you see something like: kubernetes_feature_enabled{name="SidecarContainers",stage="BETA"} 1, it means that the feature is enabled.

Check for 3rd party tooling and mutating webhooks

If you experience issues when validating the feature, it may be an indication that one of the 3rd party tools or mutating webhooks are broken.

When the SidecarContainers feature gate is enabled, Pods gain a new field in their API. Some tools or mutating webhooks might have been built with an earlier version of Kubernetes API.

If tools pass the unknown fields as-is using various patching strategies to mutate a Pod object, this will not be a problem. However there are tools that will strip out unknown fields; if you have those, they must be recompiled with the v1.28+ version of Kubernetes API client code.

The way to check this is to use the kubectl describe pod command with your Pod that has passed through mutating admission. If any tools stripped out the new field (restartPolicy:Always), you will not see it in the command output.

If you hit an issue like this, please advise the author of the tools or the webhooks use one of the patching strategies of modifying objects instead of a full object update.

Automatic injection of sidecars

If you are using software that injects sidecars automatically, there are a few possible strategies you may follow to ensure that native sidecar container can be used. All of the strategies are generally options you may choose to decide whether the Pod the sidecar will be injected to will land on a Node supporting the feature or not.

As an example, you can follow this conversation in Istio community. The discussion is exploring the options listed below.

  1. Mark Pods that lands to nodes supporting sidecars. You can use node labels and node affinity to mark nodes supporting sidecar containers and Pods landing on those nodes.
  2. Check Nodes compatibility on injection. During sidecar injection you may use the following strategies to check node compatibility:
    • query node version and assume the feature gate is enabled on the version 1.29+
    • query node prometheus metrics and check feature enablement status
    • assume the nodes are running with a supported version skew from the API server
    • there may be other custom ways to detect nodes compatibility.
  3. Develop a universal sidecar injector. The idea of a universal sidecar container is to inject a sidecar container as a regular container as well as a native sidecar container. And have a runtime logic to decide which one will work. The universal sidecar injector is wasteful as it will account for requests twice, but may be considered as a workable solution for special cases.
    • One way would be on start of a native sidecar container detect the node version and exit immediately if the version does not support the sidecar feature.
    • Consider runtime feature detection design:
      • Define an empty dir so containers can communicate with each other
      • Inject init container, let's call it NativeSidecar with restartPolicy=Always.
      • NativeSidecar must write a file to an empty dir indicating the first run and exists immediately with exit code 0.
      • NativeSidecar on restart (when native sidecars are supported) checks that file already exists in the empty dir and changes it - indicating that the built-in sidecar containers are supported and running.
      • Inject regular container, let's call it OldWaySidecar.
      • OldWaySidecar on start checks the presence of a file in an empty dir.
      • If the file indicates that the NativeSidecar is NOT running - it assumes that the sidecar feature is not supported and works assuming it is the sidecar.
      • If the file indicates that the NativeSidecar is running - it either does nothing and sleeps forever (in case when Pod’s restartPolicy=Always) or exists immediately with exit code 0 (in case when Pod’s restartPolicy!=Always).

What's next