네트워킹

클러스터에 대한 네트워킹 설정 방법에 대해 배운다.

1 - HostAliases로 파드의 /etc/hosts 항목 추가하기

파드의 /etc/hosts 파일에 항목을 추가하는 것은 DNS나 다른 방법들이 적용되지 않을 때 파드 수준의 호스트네임 해석을 제공한다. PodSpec의 HostAliases 항목을 사용하여 이러한 사용자 정의 항목들을 추가할 수 있다.

HostAliases를 사용하지 않은 수정은 권장하지 않는데, 이는 호스트 파일이 kubelet에 의해 관리되고, 파드 생성/재시작 중에 덮어쓰여질 수 있기 때문이다.

기본 호스트 파일 내용

파드 IP가 할당된 Nginx 파드를 시작한다.

kubectl run nginx --image nginx
pod/nginx created

파드 IP를 확인해보자.

kubectl get pods --output=wide
NAME     READY     STATUS    RESTARTS   AGE    IP           NODE
nginx    1/1       Running   0          13s    10.200.0.4   worker0

호스트 파일의 내용은 아래와 같을 것이다.

kubectl exec nginx -- cat /etc/hosts
# Kubernetes-managed hosts file.
127.0.0.1	localhost
::1	localhost ip6-localhost ip6-loopback
fe00::0	ip6-localnet
fe00::0	ip6-mcastprefix
fe00::1	ip6-allnodes
fe00::2	ip6-allrouters
10.200.0.4	nginx

기본적으로, hosts 파일은 localhost와 자기 자신의 호스트네임과 같은 IPv4와 IPv6 상용구들만 포함하고 있다.

hostAliases를 사용하여 추가 항목들 추가하기

기본 상용구 이외에, 추가 항목들을 hosts 파일에 추가할 수 있다. 예를 들어, foo.local, bar.local127.0.0.1로, foo.remote, bar.remote10.1.2.3로 해석될 수 있도록, .spec.hostAliases 항목에서 정의하여 파드에 HostAliases를 추가하면 가능하다.

apiVersion: v1
kind: Pod
metadata:
  name: hostaliases-pod
spec:
  restartPolicy: Never
  hostAliases:
  - ip: "127.0.0.1"
    hostnames:
    - "foo.local"
    - "bar.local"
  - ip: "10.1.2.3"
    hostnames:
    - "foo.remote"
    - "bar.remote"
  containers:
  - name: cat-hosts
    image: busybox:1.28
    command:
    - cat
    args:
    - "/etc/hosts"

다음을 실행하여 해당 구성으로 파드를 실행할 수 있다.

kubectl apply -f https://k8s.io/examples/service/networking/hostaliases-pod.yaml
pod/hostaliases-pod created

파드의 세부 정보를 검토하여 IPv4 주소와 상태를 확인해보자.

kubectl get pod --output=wide
NAME                           READY     STATUS      RESTARTS   AGE       IP              NODE
hostaliases-pod                0/1       Completed   0          6s        10.200.0.5      worker0

hosts 파일 내용은 아래와 같다.

kubectl logs hostaliases-pod
# Kubernetes-managed hosts file.
127.0.0.1	localhost
::1	localhost ip6-localhost ip6-loopback
fe00::0	ip6-localnet
fe00::0	ip6-mcastprefix
fe00::1	ip6-allnodes
fe00::2	ip6-allrouters
10.200.0.5	hostaliases-pod

# Entries added by HostAliases.
127.0.0.1	foo.local	bar.local
10.1.2.3	foo.remote	bar.remote

가장 마지막에 추가 항목들이 정의되어 있는 것을 확인할 수 있다.

왜 Kubelet이 호스트 파일을 관리하는가?

컨테이너가 이미 시작되고 난 뒤에 컨테이너 런타임이 hosts 파일을 수정하는 것을 방지하기 위해, Kubelet이 파드의 각 컨테이너의 hosts 파일을 관리한다. 역사적으로, 쿠버네티스는 컨테이너 런타임으로 계속 도커 엔진을 사용해 왔으며, 각 컨테이너가 시작된 뒤에 도커 엔진이 /etc/hosts 파일을 수정할 수 있었다.

현재 쿠버네티스는 다양한 컨테이너 런타임을 사용할 수 있으며, kubelet이 각 컨테이너 내의 hosts 파일을 관리하므로 어떤 컨테이너 런타임을 사용하는지에 상관없이 동일한 결과를 얻을 수 있다.

2 - IPv4/IPv6 이중 스택 검증

이 문서는 IPv4/IPv6 이중 스택이 활성화된 쿠버네티스 클러스터들을 어떻게 검증하는지 설명한다.

시작하기 전에

  • 이중 스택 네트워킹을 위한 제공자 지원 (클라우드 제공자 또는 기타 제공자들은 라우팅 가능한 IPv4/IPv6 네트워크 인터페이스를 제공하는 쿠버네티스 노드들을 제공해야 한다.)
  • 이중 스택 네트워킹을 지원하는 네트워크 플러그인
  • 이중 스택 활성화 클러스터
쿠버네티스 서버의 버전은 다음과 같거나 더 높아야 함. 버전: v1.23.

버전 확인을 위해서, 다음 커맨드를 실행 kubectl version.

어드레싱 검증

노드 어드레싱 검증

각각의 이중 스택 노드는 단일 IPv4 블록 및 단일 IPv6 블록을 할당받아야 한다. IPv4/IPv6 파드 주소 범위를 다음 커맨드를 실행하여 검증한다. 샘플 노드 이름을 클러스터 내 검증된 이중 스택 노드로 대체한다. 본 예제에서, 노드 이름은 k8s-linuxpool1-34450317-0 이다.

kubectl get nodes k8s-linuxpool1-34450317-0 -o go-template --template='{{range .spec.podCIDRs}}{{printf "%s\n" .}}{{end}}'
10.244.1.0/24
2001:db8::/64

단일 IPv4 블록과 단일 IPv6 블록이 할당되어야 한다.

노드가 IPv4 및 IPv6 인터페이스를 가지고 있는지 검증한다. 노드 이름을 클러스터의 검증된 노드로 대체한다. 본 예제에서 노드 이름은 k8s-linuxpool1-34450317-0 이다.

kubectl get nodes k8s-linuxpool1-34450317-0 -o go-template --template='{{range .status.addresses}}{{printf "%s: %s\n" .type .address}}{{end}}'
Hostname: k8s-linuxpool1-34450317-0
InternalIP: 10.0.0.5
InternalIP: 2001:db8:10::5

파드 어드레싱 검증

파드가 IPv4 및 IPv6 주소를 할당받았는지 검증한다. 파드 이름을 클러스터에서 검증된 파드로 대체한다. 본 예제에서 파드 이름은 pod01 이다.

kubectl get pods pod01 -o go-template --template='{{range .status.podIPs}}{{printf "%s\n" .ip}}{{end}}'
10.244.1.4
2001:db8::4

status.podIPs fieldPath를 통한 다운워드(downward) API로 파드 IP들을 검증할 수도 있다. 다음 스니펫은 컨테이너 내 MY_POD_IPS 라는 환경 변수를 통해 파드 IP들을 어떻게 노출시킬 수 있는지 보여준다.

        env:
        - name: MY_POD_IPS
          valueFrom:
            fieldRef:
              fieldPath: status.podIPs

다음 커맨드는 컨테이너 내 MY_POD_IPS 환경 변수의 값을 출력한다. 해당 값은 파드의 IPv4 및 IPv6 주소를 나타내는 쉼표로 구분된 목록이다.

kubectl exec -it pod01 -- set | grep MY_POD_IPS
MY_POD_IPS=10.244.1.4,2001:db8::4

파드의 IP 주소는 또한 컨테이너 내 /etc/hosts 에 적힐 것이다. 다음 커맨드는 이중 스택 파드의 /etc/hosts 에 cat을 실행시킨다. 출력 값을 통해 파드의 IPv4 및 IPv6 주소 모두 검증할 수 있다.

kubectl exec -it pod01 -- cat /etc/hosts
# Kubernetes-managed hosts file.
127.0.0.1    localhost
::1    localhost ip6-localhost ip6-loopback
fe00::0    ip6-localnet
fe00::0    ip6-mcastprefix
fe00::1    ip6-allnodes
fe00::2    ip6-allrouters
10.244.1.4    pod01
2001:db8::4    pod01

서비스 검증

.spec.ipFamilyPolicy 를 명시적으로 정의하지 않은 다음의 서비스를 생성한다. 쿠버네티스는 처음 구성된 service-cluster-ip-range 에서 서비스에 대한 클러스터 IP를 할당하고 .spec.ipFamilyPolicySingleStack 으로 설정한다.

apiVersion: v1
kind: Service
metadata:
  name: my-service
  labels:
    app.kubernetes.io/name: MyApp
spec:
  selector:
    app.kubernetes.io/name: MyApp
  ports:
    - protocol: TCP
      port: 80

kubectl 을 사용하여 서비스의 YAML을 확인한다.

kubectl get svc my-service -o yaml

이 서비스에서 .spec.ipFamilyPolicySingleStack 으로 설정하고 .spec.clusterIP 를 kube-controller-manager의 --service-cluster-ip-range 플래그를 통해 설정된 첫 번째 구성 범위에서 IPv4 주소로 설정한다.

apiVersion: v1
kind: Service
metadata:
  name: my-service
  namespace: default
spec:
  clusterIP: 10.0.217.164
  clusterIPs:
  - 10.0.217.164
  ipFamilies:
  - IPv4
  ipFamilyPolicy: SingleStack
  ports:
  - port: 80
    protocol: TCP
    targetPort: 9376
  selector:
    app.kubernetes.io/name: MyApp
  sessionAffinity: None
  type: ClusterIP
status:
  loadBalancer: {}

.spec.ipFamilies 의 첫 번째 배열 요소로 IPv6 을 명시적으로 정의하는 다음 서비스를 생성한다. Kubernetes는 service-cluster-ip-range로 구성된 IPv6 범위에서 서비스용 클러스터 IP를 할당하고 .spec.ipFamilyPolicySingleStack 으로 설정한다.

apiVersion: v1
kind: Service
metadata:
  name: my-service
  labels:
    app.kubernetes.io/name: MyApp
spec:
  ipFamilies:
  - IPv6
  selector:
    app.kubernetes.io/name: MyApp
  ports:
    - protocol: TCP
      port: 80

kubectl 를 사용하여 서비스의 YAML을 확인한다.

kubectl get svc my-service -o yaml

이 서비스에서 .spec.ipFamilyPolicySingleStack 으로 설정하고 .spec.clusterIP 를 kube-controller-manager의 --service-cluster-ip-range 플래그를 통해 설정된 IPv6 범위에서 IPv6 주소로 설정한다.

apiVersion: v1
kind: Service
metadata:
  labels:
    app.kubernetes.io/name: MyApp
  name: my-service
spec:
  clusterIP: 2001:db8:fd00::5118
  clusterIPs:
  - 2001:db8:fd00::5118
  ipFamilies:
  - IPv6
  ipFamilyPolicy: SingleStack
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app.kubernetes.io/name: MyApp
  sessionAffinity: None
  type: ClusterIP
status:
  loadBalancer: {}

PreferDualStack.spec.ipFamilyPolicy 을 명시적으로 정의하는 다음 서비스를 생성한다. 쿠버네티스는 IPv4 및 IPv6 주소를 모두 할당하고 (이 클러스터에는 이중 스택을 사용하도록 설정되었으므로) .spec.ipFamilies 배열에 있는 첫 번째 요소의 주소 계열을 기반으로.spec.ClusterIP 목록에서 .spec.ClusterIPs 를 선택한다.

apiVersion: v1
kind: Service
metadata:
  name: my-service
  labels:
    app.kubernetes.io/name: MyApp
spec:
  ipFamilyPolicy: PreferDualStack
  selector:
    app.kubernetes.io/name: MyApp
  ports:
    - protocol: TCP
      port: 80

서비스가 kubectl describe 를 사용하여 IPv4 및 IPv6 주소 블록에서 클러스터 IP를 가져오는지 확인한다. 그런 다음 IP 및 포트를 통해 서비스에 대한 접속을 확인할 수 있다.

kubectl describe svc -l app.kubernetes.io/name: MyApp
Name:              my-service
Namespace:         default
Labels:            app.kubernetes.io/name: MyApp
Annotations:       <none>
Selector:          app.kubernetes.io/name: MyApp
Type:              ClusterIP
IP Family Policy:  PreferDualStack
IP Families:       IPv4,IPv6
IP:                10.0.216.242
IPs:               10.0.216.242,2001:db8:fd00::af55
Port:              <unset>  80/TCP
TargetPort:        9376/TCP
Endpoints:         <none>
Session Affinity:  None
Events:            <none>

이중 스택 로드 밸런싱 서비스 생성

만약 클라우드 제공자가 IPv6 기반 외부 로드 밸런서 구성을 지원한다면 .spec.ipFamilyPolicyPreferDualStack.spec.ipFamilies 배열의 첫 번째 요소로 IPv6LoadBalancer 로 설정된 type 필드를 사용하여 다음 서비스를 생성한다.

apiVersion: v1
kind: Service
metadata:
  name: my-service
  labels:
    app.kubernetes.io/name: MyApp
spec:
  ipFamilyPolicy: PreferDualStack
  ipFamilies:
  - IPv6
  type: LoadBalancer
  selector:
    app.kubernetes.io/name: MyApp
  ports:
    - protocol: TCP
      port: 80

Check the Service:

kubectl get svc -l app.kubernetes.io/name: MyApp

서비스가 IPv6 주소 블록에서 CLUSTER-IP 주소 및 EXTERNAL-IP 주소를 할당받는지 검증한다. 그리고 나서 IP 및 포트로 서비스 접근이 가능한지 검증할 수 있다.

NAME         TYPE           CLUSTER-IP            EXTERNAL-IP        PORT(S)        AGE
my-service   LoadBalancer   2001:db8:fd00::7ebc   2603:1030:805::5   80:30790/TCP   35s

3 - 서비스 IP 범위 확장

기능 상태: Kubernetes v1.33 [stable] (enabled by default: true)

이 문서는 클러스터에 할당된 기존 서비스 IP 범위를 확장하는 방법을 설명한다.

시작하기 전에

쿠버네티스 클러스터가 필요하고, kubectl 커맨드-라인 툴이 클러스터와 통신할 수 있도록 설정되어 있어야 한다. 이 튜토리얼은 컨트롤 플레인 호스트가 아닌 노드가 적어도 2개 포함된 클러스터에서 실행하는 것을 추천한다. 만약, 아직 클러스터를 가지고 있지 않다면, minikube를 사용해서 생성하거나 다음 쿠버네티스 플레이그라운드 중 하나를 사용할 수 있다.

쿠버네티스 서버의 버전은 다음과 같거나 더 높아야 함. 버전: v1.29.

버전 확인을 위해서, 다음 커맨드를 실행 kubectl version.

서비스 IP 범위 확장

쿠버네티스 클러스터에서 MultiCIDRServiceAllocator 기능 게이트를 활성화한 kube-apiserver를 사용하고 networking.k8s.io/v1beta1 API 그룹이 활성화된 경우, kubernetes라는 잘 알려진 이름을 가진 ServiceCIDR 오브젝트를 생성하며, 이는 kube-apiserver의 --service-cluster-ip-range 명령줄 인자 값에 기반하여 IP 주소 범위를 지정한다.

kubectl get servicecidr
NAME         CIDRS          AGE
kubernetes   10.96.0.0/28   17d

잘 알려진 kubernetes 서비스는 파드에 kube-apiserver 엔드포인트를 노출시키며, 기본 ServiceCIDR 범위에서 첫 번째 IP 주소를 계산하고 해당 IP 주소를 클러스터 IP로 사용한다.

kubectl get service kubernetes
NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
kubernetes   ClusterIP   10.96.0.1    <none>        443/TCP   17d

이 경우 기본 서비스는 해당 IPAdress 오브젝트와 연결된 ClusterIP 10.96.0.1을 사용한다.

kubectl get ipaddress 10.96.0.1
NAME        PARENTREF
10.96.0.1   services/default/kubernetes

ServiceCIDR는 파이널라이저로 보호되어 서비스 ClusterIP가 고아 상태로 남는 것을 방지한다. 파이널라이저(finalizer)는 다른 서브넷에 해당 IPAddress가 포함되어 있거나 해당 서브넷에 속한 IPAddress가 전혀 없는 경우에만 제거된다.

서비스에 사용 가능한 IP 수 확장

사용자가 서비스에 사용 가능한 주소 수를 늘려야 하는 경우가 있는데, 이전에는 서비스 범위를 늘리는 작업이 데이터 손실을 초래할 수 있는 파괴적인 작업이었다. 이 새로운 기능을 통해 사용자는 사용할 수 있는 주소 수를 늘리기 위해 단순히 새로운 ServiceCIDR을 추가하면 된다.

새로운 ServiceCIDR 추가

서비스에 10.96.0.0/28 대역을 사용하는 클러스터에서는 2^(32-28) - 2 = 14개의 IP 주소만 사용할 수 있다. kubernetes.default 서비스는 항상 생성되므로, 이 예시에서는 실제로 13개의 서비스만 만들 수 있다.

for i in $(seq 1 13); do kubectl create service clusterip "test-$i" --tcp 80 -o json | jq -r .spec.clusterIP; done
10.96.0.11
10.96.0.5
10.96.0.12
10.96.0.13
10.96.0.14
10.96.0.2
10.96.0.3
10.96.0.4
10.96.0.6
10.96.0.7
10.96.0.8
10.96.0.9
error: failed to create ClusterIP service: Internal error occurred: failed to allocate a serviceIP: range is full

서비스에서 사용할 수 있는 IP 주소 수를 늘리려면, IP 주소 범위를 확장하거나 새 IP 주소 범위를 추가하는 새 ServiceCIDR을 생성하면 된다.

cat <EOF | kubectl apply -f -
apiVersion: networking.k8s.io/v1beta1
kind: ServiceCIDR
metadata:
  name: newcidr1
spec:
  cidrs:
  - 10.96.0.0/24
EOF
servicecidr.networking.k8s.io/newcidr1 created

이렇게 하면 새 범위에서 ClusterIP를 할당받는 새로운 서비스를 생성할 수 있다.

for i in $(seq 13 16); do kubectl create service clusterip "test-$i" --tcp 80 -o json | jq -r .spec.clusterIP; done
10.96.0.48
10.96.0.200
10.96.0.121
10.96.0.144

ServiceCIDR 삭제

해당 ServiceCIDR에 의존하는 IPAddresses가 존재하는 경우 해당 ServiceCIDR을 삭제할 수 없다.

kubectl delete servicecidr newcidr1
servicecidr.networking.k8s.io "newcidr1" deleted

쿠버네티스는 이러한 종속 관계를 추적하기 위해 ServiceCIDR에 파이널라이저를 사용한다.

kubectl get servicecidr newcidr1 -o yaml
apiVersion: networking.k8s.io/v1beta1
kind: ServiceCIDR
metadata:
  creationTimestamp: "2023-10-12T15:11:07Z"
  deletionGracePeriodSeconds: 0
  deletionTimestamp: "2023-10-12T15:12:45Z"
  finalizers:
  - networking.k8s.io/service-cidr-finalizer
  name: newcidr1
  resourceVersion: "1133"
  uid: 5ffd8afe-c78f-4e60-ae76-cec448a8af40
spec:
  cidrs:
  - 10.96.0.0/24
status:
  conditions:
  - lastTransitionTime: "2023-10-12T15:12:45Z"
    message: There are still IPAddresses referencing the ServiceCIDR, please remove
      them or create a new ServiceCIDR
    reason: OrphanIPAddress
    status: "False"
    type: Ready

ServiceCIDR 삭제를 막고 있는 IP 주소를 포함하는 서비스를 제거함으로써

for i in $(seq 13 16); do kubectl delete service "test-$i" ; done
service "test-13" deleted
service "test-14" deleted
service "test-15" deleted
service "test-16" deleted

컨트롤 플레인이 해당 제거를 감지한다. 이어서, 컨트롤 플레인은 파이널라이저를 삭제하므로, 삭제 대기 상태였던 ServiceCIDR이 실제로 제거된다.

kubectl get servicecidr newcidr1
Error from server (NotFound): servicecidrs.networking.k8s.io "newcidr1" not found

쿠버네티스 ServiceCIDR 정책

클러스터 관리자는 클러스터 내에서 ServiceCIDR 리소스의 생성과 수정을 제어하는 정책을 구현할 수 있다. 이를 통해 서비스에 사용되는 IP 주소 범위를 중앙에서 관리하고 의도치 않거나 충돌하는 구성을 방지할 수 있다. 쿠버네티스는 이러한 규칙을 강제하기 위해 Validating Admission Policy와 같은 메커니즘을 제공한다.

Validating Admission Policy로 무단 ServiceCIDR 생성/수정 방지

클러스터 관리자는 허용할 수 있는 범위를 제한하거나, 클러스터 서비스 IP 범위에 대한 변경을 완전히 차단하고자 하는 상황이 있을 수 있다.

특정 범위로 ServiceCIDR 제한

다음은 allowed로 지정한 범위의 서브넷인 경우에만 ServiceCIDR을 생성할 수 있도록 허용하는 ValidatingAdmissionPolicy 예시이다. (예를 들어, 이 정책에서는 cidrs: ['10.96.1.0/24'] 또는 cidrs: ['2001:db8:0:0:ffff::/80', '10.96.0.0/20']를 가진 ServiceCIDR은 허용되지만, cidrs: ['172.20.0.0/16']를 가진 ServiceCIDR은 허용되지 않는다.) 이 정책을 복사하여 환경에 맞게 allowed 값을 변경해 사용할 수 있다.

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingAdmissionPolicy
metadata:
  name: "servicecidrs.default"
spec:
  failurePolicy: Fail
  matchConstraints:
    resourceRules:
    - apiGroups:   ["networking.k8s.io"]
      apiVersions: ["v1","v1beta1"]
      operations:  ["CREATE", "UPDATE"]
      resources:   ["servicecidrs"]
  matchConditions:
  - name: 'exclude-default-servicecidr'
    expression: "object.metadata.name != 'kubernetes'"
  variables:
  - name: allowed
    expression: "['10.96.0.0/16','2001:db8::/64']"
  validations:
  - expression: "object.spec.cidrs.all(newCIDR, variables.allowed.exists(allowedCIDR, cidr(allowedCIDR).containsCIDR(newCIDR)))"
  # For all CIDRs (newCIDR) listed in the spec.cidrs of the submitted ServiceCIDR
  # object, check if there exists at least one CIDR (allowedCIDR) in the `allowed`
  # list of the VAP such that the allowedCIDR fully contains the newCIDR.
---
apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingAdmissionPolicyBinding
metadata:
  name: "servicecidrs-binding"
spec:
  policyName: "servicecidrs.default"
  validationActions: [Deny,Audit]

자체 검증 expression을 작성하려면 CEL 문서를 참고하면 된다.

ServiceCIDR API 사용 전면 제한

아래 예시는 기본 "kubernetes" ServiceCIDR을 제외하고, 새로운 ServiceCIDR 범위 생성을 제한하기 위해 ValidatingAdmissionPolicy와 해당 바인딩을 사용하는 방법을 보여준다.

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingAdmissionPolicy
metadata:
  name: "servicecidrs.deny"
spec:
  failurePolicy: Fail
  matchConstraints:
    resourceRules:
    - apiGroups:   ["networking.k8s.io"]
      apiVersions: ["v1","v1beta1"]
      operations:  ["CREATE", "UPDATE"]
      resources:   ["servicecidrs"]
  validations:
  - expression: "object.metadata.name == 'kubernetes'"
---
apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingAdmissionPolicyBinding
metadata:
  name: "servicecidrs-deny-binding"
spec:
  policyName: "servicecidrs.deny"
  validationActions: [Deny,Audit]