这是本节的多页打印视图。 点击此处打印.

返回本页常规视图.

服务、负载均衡和联网

Kubernetes 网络背后的概念和资源。

Kubernetes 网络模型

集群中每一个 Pod 都会获得自己的、 独一无二的 IP 地址, 这就意味着你不需要显式地在 Pod 之间创建链接,你几乎不需要处理容器端口到主机端口之间的映射。 这将形成一个干净的、向后兼容的模型;在这个模型里,从端口分配、命名、服务发现、 负载均衡、 应用配置和迁移的角度来看,Pod 可以被视作虚拟机或者物理主机。

Kubernetes 强制要求所有网络设施都满足以下基本要求(从而排除了有意隔离网络的策略):

  • Pod 能够与所有其他节点上的 Pod 通信, 且不需要网络地址转译(NAT)
  • 节点上的代理(比如:系统守护进程、kubelet)可以和节点上的所有 Pod 通信

说明:对于支持在主机网络中运行 Pod 的平台(比如:Linux), 当 Pod 挂接到节点的宿主网络上时,它们仍可以不通过 NAT 和所有节点上的 Pod 通信。

这个模型不仅不复杂,而且还和 Kubernetes 的实现从虚拟机向容器平滑迁移的初衷相符, 如果你的任务开始是在虚拟机中运行的,你的虚拟机有一个 IP, 可以和项目中其他虚拟机通信。这里的模型是基本相同的。

Kubernetes 的 IP 地址存在于 Pod 范围内 —— 容器共享它们的网络命名空间 —— 包括它们的 IP 地址和 MAC 地址。 这就意味着 Pod 内的容器都可以通过 localhost 到达对方端口。 这也意味着 Pod 内的容器需要相互协调端口的使用,但是这和虚拟机中的进程似乎没有什么不同, 这也被称为“一个 Pod 一个 IP”模型。

如何实现以上需求是所使用的特定容器运行时的细节。

也可以在 Node 本身请求端口,并用这类端口转发到你的 Pod(称之为主机端口), 但这是一个很特殊的操作。转发方式如何实现也是容器运行时的细节。 Pod 自己并不知道这些主机端口的存在。

Kubernetes 网络解决四方面的问题:

使用 Service 连接到应用教程通过一个实际的示例让你了解 Service 和 Kubernetes 如何联网。

集群网络解释了如何为集群设置网络, 还概述了所涉及的技术。

1 - 服务(Service)

将在集群中运行的应用程序暴露在单个外向端点后面,即使工作负载分散到多个后端也是如此。
将运行在一组 Pods 上的应用程序公开为网络服务的抽象方法。

使用 Kubernetes,你无需修改应用程序即可使用不熟悉的服务发现机制。 Kubernetes 为 Pod 提供自己的 IP 地址,并为一组 Pod 提供相同的 DNS 名, 并且可以在它们之间进行负载均衡。

动机

创建和销毁 Kubernetes Pod 以匹配集群的期望状态。 Pod 是非永久性资源。 如果你使用 Deployment 来运行你的应用程序,则它可以动态创建和销毁 Pod。

每个 Pod 都有自己的 IP 地址,但是在 Deployment 中,在同一时刻运行的 Pod 集合可能与稍后运行该应用程序的 Pod 集合不同。

这导致了一个问题: 如果一组 Pod(称为“后端”)为集群内的其他 Pod(称为“前端”)提供功能, 那么前端如何找出并跟踪要连接的 IP 地址,以便前端可以使用提供工作负载的后端部分?

进入 Services

Service 资源

Kubernetes Service 定义了这样一种抽象:逻辑上的一组 Pod,一种可以访问它们的策略 —— 通常称为微服务。 Service 所针对的 Pod 集合通常是通过选择算符来确定的。 要了解定义服务端点的其他方法,请参阅不带选择算符的服务

举个例子,考虑一个图片处理后端,它运行了 3 个副本。这些副本是可互换的 —— 前端不需要关心它们调用了哪个后端副本。 然而组成这一组后端程序的 Pod 实际上可能会发生变化, 前端客户端不应该也没必要知道,而且也不需要跟踪这一组后端的状态。

Service 定义的抽象能够解耦这种关联。

云原生服务发现

如果你想要在应用程序中使用 Kubernetes API 进行服务发现,则可以查询 API 服务器 用于匹配 EndpointSlices。只要服务中的 Pod 集合发生更改,Kubernetes 就会为服务更新 EndpointSlices。

对于非本机应用程序,Kubernetes 提供了在应用程序和后端 Pod 之间放置网络端口或负载均衡器的方法。

定义 Service

Service 在 Kubernetes 中是一个 REST 对象,和 Pod 类似。 像所有的 REST 对象一样,Service 定义可以基于 POST 方式,请求 API server 创建新的实例。 Service 对象的名称必须是合法的 RFC 1035 标签名称

例如,假定有一组 Pod,它们对外暴露了 9376 端口,同时还被打上 app.kubernetes.io/name=MyApp 标签:

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app.kubernetes.io/name: MyApp
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376

上述配置创建一个名称为 "my-service" 的 Service 对象,它会将请求代理到使用 TCP 端口 9376,并且具有标签 app.kubernetes.io/name=MyApp 的 Pod 上。

Kubernetes 为该服务分配一个 IP 地址(有时称为 “集群 IP”),该 IP 地址由服务代理使用。 (请参见下面的虚拟 IP 寻址机制).

服务选择算符的控制器不断扫描与其选择算符匹配的 Pod,然后将所有更新发布到也称为 “my-service” 的 Endpoint 对象。

Pod 中的端口定义是有名字的,你可以在 Service 的 targetPort 属性中引用这些名称。 例如,我们可以通过以下方式将 Service 的 targetPort 绑定到 Pod 端口:

apiVersion: v1
kind: Pod
metadata:
  name: nginx
  labels:
    app.kubernetes.io/name: proxy
spec:
  containers:
  - name: nginx
    image: nginx:stable
    ports:
      - containerPort: 80
        name: http-web-svc

---
apiVersion: v1
kind: Service
metadata:
  name: nginx-service
spec:
  selector:
    app.kubernetes.io/name: proxy
  ports:
  - name: name-of-service-port
    protocol: TCP
    port: 80
    targetPort: http-web-svc

即使 Service 中使用同一配置名称混合使用多个 Pod,各 Pod 通过不同的端口号支持相同的网络协议, 此功能也可以使用。这为 Service 的部署和演化提供了很大的灵活性。 例如,你可以在新版本中更改 Pod 中后端软件公开的端口号,而不会破坏客户端。

服务的默认协议是 TCP(/zh-cn/docs/reference/networking/service-protocols/#protocol-tcp); 你还可以使用任何其他受支持的协议

由于许多服务需要公开多个端口,因此 Kubernetes 在服务对象上支持多个端口定义。 每个端口定义可以具有相同的 protocol,也可以具有不同的协议。

没有选择算符的 Service

由于选择算符的存在,服务最常见的用法是为 Kubernetes Pod 的访问提供抽象, 但是当与相应的 EndpointSlices 对象一起使用且没有选择算符时, 服务也可以为其他类型的后端提供抽象,包括在集群外运行的后端。

例如:

  • 希望在生产环境中使用外部的数据库集群,但测试环境使用自己的数据库。
  • 希望服务指向另一个 名字空间(Namespace) 中或其它集群中的服务。
  • 你正在将工作负载迁移到 Kubernetes。在评估该方法时,你仅在 Kubernetes 中运行一部分后端。

在任何这些场景中,都能够定义没有选择算符的 Service。 实例:

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376

由于此服务没有选择算符,因此不会自动创建相应的 EndpointSlice(和旧版 Endpoint)对象。 你可以通过手动添加 EndpointSlice 对象,将服务手动映射到运行该服务的网络地址和端口:

apiVersion: discovery.k8s.io/v1
kind: EndpointSlice
metadata:
  name: my-service-1 # 按惯例将服务的名称用作 EndpointSlice 名称的前缀
  labels:
    # 你应设置 "kubernetes.io/service-name" 标签。
    # 设置其值以匹配服务的名称
    kubernetes.io/service-name: my-service
addressType: IPv4
ports:
  - name: '' # 留空,因为 port 9376 未被 IANA 分配为已注册端口
    appProtocol: http
    protocol: TCP
    port: 9376
endpoints:
  - addresses:
      - "10.4.5.6" # 此列表中的 IP 地址可以按任何顺序显示
      - "10.1.2.3"

自定义 EndpointSlices

当为服务创建 EndpointSlice 对象时,可以为 EndpointSlice 使用任何名称。 命名空间中的每个 EndpointSlice 必须有一个唯一的名称。通过在 EndpointSlice 上设置 kubernetes.io/service-name label 可以将 EndpointSlice 链接到服务。

对于你自己或在你自己代码中创建的 EndpointSlice,你还应该为 endpointslice.kubernetes.io/managed-by 标签拣选一个值。如果你创建自己的控制器代码来管理 EndpointSlice, 请考虑使用类似于 "my-domain.example/name-of-controller" 的值。 如果你使用的是第三方工具,请使用全小写的工具名称,并将空格和其他标点符号更改为短划线 (-)。 如果人们直接使用 kubectl 之类的工具来管理 EndpointSlices,请使用描述这种手动管理的名称, 例如 "staff""cluster-admins"。你应该避免使用保留值 "controller", 该值标识由 Kubernetes 自己的控制平面管理的 EndpointSlices。

访问没有选择算符的 Service

访问没有选择算符的 Service,与有选择算符的 Service 的原理相同。 在没有选择算符的 Service 示例中, 流量被路由到 EndpointSlice 清单中定义的两个端点之一: 通过 TCP 协议连接到 10.1.2.3 或 10.4.5.6 的端口 9376。

ExternalName Service 是 Service 的特例,它没有选择算符,但是使用 DNS 名称。 有关更多信息,请参阅本文档后面的 ExternalName

EndpointSlices

特性状态: Kubernetes v1.21 [stable]

EndpointSlices 这些对象表示针对服务的后备网络端点的子集(切片)。

你的 Kubernetes 集群会跟踪每个 EndpointSlice 表示的端点数量。 如果服务的端点太多以至于达到阈值,Kubernetes 会添加另一个空的 EndpointSlice 并在其中存储新的端点信息。 默认情况下,一旦现有 EndpointSlice 都包含至少 100 个端点,Kubernetes 就会创建一个新的 EndpointSlice。 在需要添加额外的端点之前,Kubernetes 不会创建新的 EndpointSlice。

参阅 EndpointSlices 了解有关该 API 的更多信息。

Endpoints

在 Kubernetes API 中,Endpoints (该资源类别为复数)定义了网络端点的列表,通常由 Service 引用,以定义可以将流量发送到哪些 Pod。

推荐用 EndpointSlice API 替换 Endpoints。

超出容量的端点

Kubernetes 限制单个 Endpoints 对象中可以容纳的端点数量。 当一个服务有超过 1000 个后备端点时,Kubernetes 会截断 Endpoints 对象中的数据。 由于一个服务可以链接多个 EndpointSlice,所以 1000 个后备端点的限制仅影响旧版的 Endpoints API。

这种情况下,Kubernetes 选择最多 1000 个可能的后端端点来存储到 Endpoints 对象中,并在 Endpoints: endpoints.kubernetes.io/over-capacity: truncated 上设置注解。 如果后端 Pod 的数量低于 1000,控制平面也会移除该注解。

流量仍会发送到后端,但任何依赖旧版 Endpoints API 的负载均衡机制最多只能将流量发送到 1000 个可用的后备端点。

相同的 API 限制意味着你不能手动将 Endpoints 更新为拥有超过 1000 个端点。

应用协议

特性状态: Kubernetes v1.20 [stable]

appProtocol 字段提供了一种为每个 Service 端口指定应用协议的方式。 此字段的取值会被映射到对应的 Endpoints 和 EndpointSlices 对象。

该字段遵循标准的 Kubernetes 标签语法。 其值可以是 IANA 标准服务名称 或以域名为前缀的名称,如 mycompany.com/my-custom-protocol

多端口 Service

对于某些服务,你需要公开多个端口。 Kubernetes 允许你在 Service 对象上配置多个端口定义。 为服务使用多个端口时,必须提供所有端口名称,以使它们无歧义。 例如:

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app.kubernetes.io/name: MyApp
  ports:
    - name: http
      protocol: TCP
      port: 80
      targetPort: 9376
    - name: https
      protocol: TCP
      port: 443
      targetPort: 9377

选择自己的 IP 地址

Service 创建的请求中,可以通过设置 spec.clusterIP 字段来指定自己的集群 IP 地址。 比如,希望替换一个已经已存在的 DNS 条目,或者遗留系统已经配置了一个固定的 IP 且很难重新配置。

用户选择的 IP 地址必须合法,并且这个 IP 地址在 service-cluster-ip-range CIDR 范围内, 这对 API 服务器来说是通过一个标识来指定的。 如果 IP 地址不合法,API 服务器会返回 HTTP 状态码 422,表示值不合法。

服务发现

Kubernetes 支持两种基本的服务发现模式 —— 环境变量和 DNS。

环境变量

当 Pod 运行在 Node 上,kubelet 会为每个活跃的 Service 添加一组环境变量。 kubelet 为 Pod 添加环境变量 {SVCNAME}_SERVICE_HOST{SVCNAME}_SERVICE_PORT。 这里 Service 的名称需大写,横线被转换成下划线。 它还支持与 Docker Engine 的 "legacy container links" 特性兼容的变量 (参阅 makeLinkVariables) 。

举个例子,一个名称为 redis-primary 的 Service 暴露了 TCP 端口 6379, 同时给它分配了 Cluster IP 地址 10.0.0.11,这个 Service 生成了如下环境变量:

REDIS_PRIMARY_SERVICE_HOST=10.0.0.11
REDIS_PRIMARY_SERVICE_PORT=6379
REDIS_PRIMARY_PORT=tcp://10.0.0.11:6379
REDIS_PRIMARY_PORT_6379_TCP=tcp://10.0.0.11:6379
REDIS_PRIMARY_PORT_6379_TCP_PROTO=tcp
REDIS_PRIMARY_PORT_6379_TCP_PORT=6379
REDIS_PRIMARY_PORT_6379_TCP_ADDR=10.0.0.11

DNS

你可以(几乎总是应该)使用附加组件 为 Kubernetes 集群设置 DNS 服务。

支持集群的 DNS 服务器(例如 CoreDNS)监视 Kubernetes API 中的新服务,并为每个服务创建一组 DNS 记录。 如果在整个集群中都启用了 DNS,则所有 Pod 都应该能够通过其 DNS 名称自动解析服务。

例如,如果你在 Kubernetes 命名空间 my-ns 中有一个名为 my-service 的服务, 则控制平面和 DNS 服务共同为 my-service.my-ns 创建 DNS 记录。 my-ns 命名空间中的 Pod 应该能够通过按名检索 my-service 来找到服务 (my-service.my-ns 也可以工作)。

其他命名空间中的 Pod 必须将名称限定为 my-service.my-ns。 这些名称将解析为为服务分配的集群 IP。

Kubernetes 还支持命名端口的 DNS SRV(服务)记录。 如果 my-service.my-ns 服务具有名为 http 的端口,且协议设置为 TCP, 则可以对 _http._tcp.my-service.my-ns 执行 DNS SRV 查询以发现该端口号、"http" 以及 IP 地址。

Kubernetes DNS 服务器是唯一的一种能够访问 ExternalName 类型的 Service 的方式。 更多关于 ExternalName 信息可以查看 DNS Pod 和 Service

无头服务(Headless Services)

有时不需要或不想要负载均衡,以及单独的 Service IP。 遇到这种情况,可以通过指定 Cluster IP(spec.clusterIP)的值为 "None" 来创建 Headless Service。

你可以使用一个无头 Service 与其他服务发现机制进行接口,而不必与 Kubernetes 的实现捆绑在一起。

对于无头 Services 并不会分配 Cluster IP,kube-proxy 不会处理它们, 而且平台也不会为它们进行负载均衡和路由。 DNS 如何实现自动配置,依赖于 Service 是否定义了选择算符。

带选择算符的服务

对定义了选择算符的无头服务,Kubernetes 控制平面在 Kubernetes API 中创建 EndpointSlice 对象, 并且修改 DNS 配置返回 A 或 AAA 条记录(IPv4 或 IPv6 地址),通过这个地址直接到达 Service 的后端 Pod 上。

无选择算符的服务

对没有定义选择算符的无头服务,控制平面不会创建 EndpointSlice 对象。 然而 DNS 系统会查找和配置以下之一:

  • 对于 type: ExternalName 服务,查找和配置其 CNAME 记录
  • 对所有其他类型的服务,针对 Service 的就绪端点的所有 IP 地址,查找和配置 DNS A / AAAA 条记录
    • 对于 IPv4 端点,DNS 系统创建 A 条记录。
    • 对于 IPv6 端点,DNS 系统创建 AAAA 条记录。

发布服务(服务类型)

对一些应用的某些部分(如前端),可能希望将其暴露给 Kubernetes 集群外部的 IP 地址。

Kubernetes ServiceTypes 允许指定你所需要的 Service 类型。

Type 的取值以及行为如下:

  • ClusterIP:通过集群的内部 IP 暴露服务,选择该值时服务只能够在集群内部访问。 这也是你没有为服务显式指定 type 时使用的默认值。

  • NodePort:通过每个节点上的 IP 和静态端口(NodePort)暴露服务。 为了让节点端口可用,Kubernetes 设置了集群 IP 地址,这等同于你请求 type: ClusterIP 的服务。

  • LoadBalancer:使用云提供商的负载均衡器向外部暴露服务。 外部负载均衡器可以将流量路由到自动创建的 NodePort 服务和 ClusterIP 服务上。

  • ExternalName:通过返回 CNAME 记录和对应值,可以将服务映射到 externalName 字段的内容(例如,foo.bar.example.com)。 无需创建任何类型代理。

type 字段被设计为嵌套功能 - 每个级别都添加到前一个级别。 这并不是所有云提供商都严格要求的(例如:Google Compute Engine 不需要分配节点端口来使 type: LoadBalancer 工作,但另一个云提供商集成可能会这样做)。 虽然不需要严格的嵌套,但是 Service 的 Kubernetes API 设计无论如何都需要它。

你也可以使用 Ingress 来暴露自己的服务。 Ingress 不是一种服务类型,但它充当集群的入口点。 它可以将路由规则整合到一个资源中,因为它可以在同一 IP 地址下公开多个服务。

NodePort 类型

如果你将 type 字段设置为 NodePort,则 Kubernetes 控制平面将在 --service-node-port-range 标志指定的范围内分配端口(默认值:30000-32767)。 每个节点将那个端口(每个节点上的相同端口号)代理到你的服务中。 你的服务在其 .spec.ports[*].nodePort 字段中报告已分配的端口。

使用 NodePort 可以让你自由设置自己的负载均衡解决方案, 配置 Kubernetes 不完全支持的环境, 甚至直接暴露一个或多个节点的 IP 地址。

对于 NodePort 服务,Kubernetes 额外分配一个端口(TCP、UDP 或 SCTP 以匹配服务的协议)。 集群中的每个节点都将自己配置为监听分配的端口并将流量转发到与该服务关联的某个就绪端点。 通过使用适当的协议(例如 TCP)和适当的端口(分配给该服务)连接到所有节点, 你将能够从集群外部使用 type: NodePort 服务。

选择你自己的端口

如果需要特定的端口号,你可以在 nodePort 字段中指定一个值。 控制平面将为你分配该端口或报告 API 事务失败。 这意味着你需要自己注意可能发生的端口冲突。 你还必须使用有效的端口号,该端口号在配置用于 NodePort 的范围内。

以下是 type: NodePort 服务的一个示例清单,它指定了一个 NodePort 值(在本例中为 30007)。

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  type: NodePort
  selector:
    app.kubernetes.io/name: MyApp
  ports:
      # 默认情况下,为了方便起见,`targetPort` 被设置为与 `port` 字段相同的值。
    - port: 80
      targetPort: 80
      # 可选字段
      # 默认情况下,为了方便起见,Kubernetes 控制平面会从某个范围内分配一个端口号(默认:30000-32767)
      nodePort: 30007

type: NodePort 服务自定义 IP 地址配置

你可以在集群中设置节点以使用特定 IP 地址来提供 NodePort 服务。 如果每个节点都连接到多个网络(例如:一个网络用于应用程序流量,另一个网络用于节点和控制平面之间的流量), 你可能需要执行此操作。

如果你要指定特定的 IP 地址来代理端口,可以将 kube-proxy 的 --nodeport-addresses 标志或 kube-proxy 配置文件的等效 nodePortAddresses 字段设置为特定的 IP 段。

此标志采用逗号分隔的 IP 段列表(例如 10.0.0.0/8192.0.2.0/25)来指定 kube-proxy 应视为该节点本地的 IP 地址范围。

例如,如果你使用 --nodeport-addresses=127.0.0.0/8 标志启动 kube-proxy, 则 kube-proxy 仅选择 NodePort 服务的环回接口。 --nodeport-addresses 的默认值是一个空列表。 这意味着 kube-proxy 应考虑 NodePort 的所有可用网络接口。 (这也与早期的 Kubernetes 版本兼容。)

LoadBalancer 类型

在使用支持外部负载均衡器的云提供商的服务时,设置 type 的值为 "LoadBalancer", 将为 Service 提供负载均衡器。 负载均衡器是异步创建的,关于被提供的负载均衡器的信息将会通过 Service 的 status.loadBalancer 字段发布出去。

实例:

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app.kubernetes.io/name: MyApp
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376
  clusterIP: 10.0.171.239
  type: LoadBalancer
status:
  loadBalancer:
    ingress:
    - ip: 192.0.2.127

来自外部负载均衡器的流量将直接重定向到后端 Pod 上,不过实际它们是如何工作的,这要依赖于云提供商。

某些云提供商允许设置 loadBalancerIP。 在这些情况下,将根据用户设置的 loadBalancerIP 来创建负载均衡器。 如果没有设置 loadBalancerIP 字段,将会给负载均衡器指派一个临时 IP。 如果设置了 loadBalancerIP,但云提供商并不支持这种特性,那么设置的 loadBalancerIP 值将会被忽略掉。

要实现 type: LoadBalancer 的服务,Kubernetes 通常首先进行与请求 type: NodePort 服务等效的更改。 cloud-controller-manager 组件然后配置外部负载均衡器以将流量转发到已分配的节点端口。

作为 Alpha 特性,你可以将负载均衡服务配置为忽略分配节点端口, 前提是云提供商实现支持这点。

混合协议类型的负载均衡器

特性状态: Kubernetes v1.20 [alpha]

默认情况下,对于 LoadBalancer 类型的服务,当定义了多个端口时, 所有端口必须具有相同的协议,并且该协议必须是受云提供商支持的协议。

当服务中定义了多个端口时,特性门控 MixedProtocolLBService(在 kube-apiserver 1.24 版本默认为启用)允许 LoadBalancer 类型的服务使用不同的协议。

禁用负载均衡器节点端口分配

特性状态: Kubernetes v1.24 [stable]

你可以通过设置 spec.allocateLoadBalancerNodePortsfalse 对类型为 LoadBalancer 的服务禁用节点端口分配。 这仅适用于直接将流量路由到 Pod 而不是使用节点端口的负载均衡器实现。 默认情况下,spec.allocateLoadBalancerNodePortstrue, LoadBalancer 类型的服务继续分配节点端口。 如果现有服务已被分配节点端口,将参数 spec.allocateLoadBalancerNodePorts 设置为 false 时,这些服务上已分配置的节点端口不会被自动释放。 你必须显式地在每个服务端口中删除 nodePorts 项以释放对应端口。

设置负载均衡器实现的类别

特性状态: Kubernetes v1.24 [stable]

spec.loadBalancerClass 允许你不使用云提供商的默认负载均衡器实现,转而使用指定的负载均衡器实现。 默认情况下,.spec.loadBalancerClass 的取值是 nil,如果集群使用 --cloud-provider 配置了云提供商, LoadBalancer 类型服务会使用云提供商的默认负载均衡器实现。 如果设置了 .spec.loadBalancerClass,则假定存在某个与所指定的类相匹配的负载均衡器实现在监视服务变化。 所有默认的负载均衡器实现(例如,由云提供商所提供的)都会忽略设置了此字段的服务。.spec.loadBalancerClass 只能设置到类型为 LoadBalancer 的 Service 之上,而且一旦设置之后不可变更。

.spec.loadBalancerClass 的值必须是一个标签风格的标识符, 可以有选择地带有类似 "internal-vip" 或 "example.com/internal-vip" 这类前缀。 没有前缀的名字是保留给最终用户的。

内部负载均衡器

在混合环境中,有时有必要在同一(虚拟)网络地址块内路由来自服务的流量。

在水平分割 DNS 环境中,你需要两个服务才能将内部和外部流量都路由到你的端点(Endpoints)。

如要设置内部负载均衡器,请根据你所使用的云运营商,为服务添加以下注解之一。

选择一个标签。

[...]
metadata:
    name: my-service
    annotations:
        cloud.google.com/load-balancer-type: "Internal"
[...]

[...]
metadata:
    name: my-service
    annotations:
        service.beta.kubernetes.io/aws-load-balancer-internal: "true"
[...]

[...]
metadata:
    name: my-service
    annotations:
        service.beta.kubernetes.io/azure-load-balancer-internal: "true"
[...]

[...]
metadata:
    name: my-service
    annotations:
        service.kubernetes.io/ibm-load-balancer-cloud-provider-ip-type: "private"
[...]

[...]
metadata:
    name: my-service
    annotations:
        service.beta.kubernetes.io/openstack-internal-load-balancer: "true"
[...]

[...]
metadata:
    name: my-service
    annotations:
        service.beta.kubernetes.io/cce-load-balancer-internal-vpc: "true"
[...]

[...]
metadata:
  annotations:
    service.kubernetes.io/qcloud-loadbalancer-internal-subnetid: subnet-xxxxx
[...]

[...]
metadata:
  annotations:
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-address-type: "intranet"
[...]

[...]
metadata:
    name: my-service
    annotations:
        service.beta.kubernetes.io/oci-load-balancer-internal: true
[...]

AWS TLS 支持

为了对在 AWS 上运行的集群提供 TLS/SSL 部分支持,你可以向 LoadBalancer 服务添加三个注解:

metadata:
  name: my-service
  annotations:
    service.beta.kubernetes.io/aws-load-balancer-ssl-cert: arn:aws:acm:us-east-1:123456789012:certificate/12345678-1234-1234-1234-123456789012

第一个指定要使用的证书的 ARN。 它可以是已上载到 IAM 的第三方颁发者的证书, 也可以是在 AWS Certificate Manager 中创建的证书。

metadata:
  name: my-service
  annotations:
    service.beta.kubernetes.io/aws-load-balancer-backend-protocol: (https|http|ssl|tcp)

第二个注解指定 Pod 使用哪种协议。对于 HTTPS 和 SSL,ELB 希望 Pod 使用证书通过加密连接对自己进行身份验证。

HTTP 和 HTTPS 选择第7层代理:ELB 终止与用户的连接,解析标头,并在转发请求时向 X-Forwarded-For 标头注入用户的 IP 地址(Pod 仅在连接的另一端看到 ELB 的 IP 地址)。

TCP 和 SSL 选择第4层代理:ELB 转发流量而不修改报头。

在某些端口处于安全状态而其他端口未加密的混合使用环境中,可以使用以下注解:

    metadata:
      name: my-service
      annotations:
        service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http
        service.beta.kubernetes.io/aws-load-balancer-ssl-ports: "443,8443"

在上例中,如果服务包含 804438443 三个端口, 那么 4438443 将使用 SSL 证书, 而 80 端口将转发 HTTP 数据包。

从 Kubernetes v1.9 起可以使用 预定义的 AWS SSL 策略 为你的服务使用 HTTPS 或 SSL 侦听器。 要查看可以使用哪些策略,可以使用 aws 命令行工具:

aws elb describe-load-balancer-policies --query 'PolicyDescriptions[].PolicyName'

然后,你可以使用 "service.beta.kubernetes.io/aws-load-balancer-ssl-negotiation-policy" 注解; 例如:

    metadata:
      name: my-service
      annotations:
        service.beta.kubernetes.io/aws-load-balancer-ssl-negotiation-policy: "ELBSecurityPolicy-TLS-1-2-2017-01"

AWS 上的 PROXY 协议支持

为了支持在 AWS 上运行的集群,启用 PROXY 协议。 你可以使用以下服务注解:

    metadata:
      name: my-service
      annotations:
        service.beta.kubernetes.io/aws-load-balancer-proxy-protocol: "*"

从 1.3.0 版开始,此注解的使用适用于 ELB 代理的所有端口,并且不能进行其他配置。

AWS 上的 ELB 访问日志

有几个注解可用于管理 AWS 上 ELB 服务的访问日志。

注解 service.beta.kubernetes.io/aws-load-balancer-access-log-enabled 控制是否启用访问日志。

注解 service.beta.kubernetes.io/aws-load-balancer-access-log-emit-interval 控制发布访问日志的时间间隔(以分钟为单位)。你可以指定 5 分钟或 60 分钟的间隔。

注解 service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-name 控制存储负载均衡器访问日志的 Amazon S3 存储桶的名称。

注解 service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefix 指定为 Amazon S3 存储桶创建的逻辑层次结构。

    metadata:
      name: my-service
      annotations:
        service.beta.kubernetes.io/aws-load-balancer-access-log-enabled: "true"
        # 指定是否为负载均衡器启用访问日志
        service.beta.kubernetes.io/aws-load-balancer-access-log-emit-interval: "60"
        # 发布访问日志的时间间隔。你可以将其设置为 5 分钟或 60 分钟。
        service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-name: "my-bucket"
        # 用来存放访问日志的 Amazon S3 Bucket 名称
        service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefix: "my-bucket-prefix/prod"
        # 你为 Amazon S3 Bucket 所创建的逻辑层次结构,例如 `my-bucket-prefix/prod`

AWS 上的连接排空

可以将注解 service.beta.kubernetes.io/aws-load-balancer-connection-draining-enabled 设置为 "true" 来管理 ELB 的连接排空。 注解 service.beta.kubernetes.io/aws-load-balancer-connection-draining-timeout 也可以用于设置最大时间(以秒为单位),以保持现有连接在注销实例之前保持打开状态。

    metadata:
      name: my-service
      annotations:
        service.beta.kubernetes.io/aws-load-balancer-connection-draining-enabled: "true"
        service.beta.kubernetes.io/aws-load-balancer-connection-draining-timeout: "60"

其他 ELB 注解

还有其他一些注解,用于管理经典弹性负载均衡器,如下所述。

    metadata:
      name: my-service
      annotations:
        # 按秒计的时间,表示负载均衡器关闭连接之前连接可以保持空闲
        # (连接上无数据传输)的时间长度
        service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "60"

        # 指定该负载均衡器上是否启用跨区的负载均衡能力
        service.beta.kubernetes.io/aws-load-balancer-cross-zone-load-balancing-enabled: "true"

        # 逗号分隔列表值,每一项都是一个键-值耦对,会作为额外的标签记录于 ELB 中
        service.beta.kubernetes.io/aws-load-balancer-additional-resource-tags: "environment=prod,owner=devops"

        # 将某后端视为健康、可接收请求之前需要达到的连续成功健康检查次数。
        # 默认为 2,必须介于 2 和 10 之间
        service.beta.kubernetes.io/aws-load-balancer-healthcheck-healthy-threshold: ""

        # 将某后端视为不健康、不可接收请求之前需要达到的连续不成功健康检查次数。
        # 默认为 6,必须介于 2 和 10 之间
        service.beta.kubernetes.io/aws-load-balancer-healthcheck-unhealthy-threshold: "3"

        # 对每个实例进行健康检查时,连续两次检查之间的大致间隔秒数
        # 默认为 10,必须介于 5 和 300 之间
        service.beta.kubernetes.io/aws-load-balancer-healthcheck-interval: "20"

        # 时长秒数,在此期间没有响应意味着健康检查失败
        # 此值必须小于 service.beta.kubernetes.io/aws-load-balancer-healthcheck-interval
        # 默认值为 5,必须介于 2 和 60 之间
        service.beta.kubernetes.io/aws-load-balancer-healthcheck-timeout: "5"

        # 由已有的安全组所构成的列表,可以配置到所创建的 ELB 之上。
        # 与注解 service.beta.kubernetes.io/aws-load-balancer-extra-security-groups 不同,
        # 这一设置会替代掉之前指定给该 ELB 的所有其他安全组,也会覆盖掉为此
        # ELB 所唯一创建的安全组。 
        # 此列表中的第一个安全组 ID 被用来作为决策源,以允许入站流量流入目标工作节点
        # (包括服务流量和健康检查)。
        # 如果多个 ELB 配置了相同的安全组 ID,为工作节点安全组添加的允许规则行只有一个,
        # 这意味着如果你删除了这些 ELB 中的任何一个,都会导致该规则记录被删除,
        # 以至于所有共享该安全组 ID 的其他 ELB 都无法访问该节点。
        # 此注解如果使用不当,会导致跨服务的不可用状况。
        service.beta.kubernetes.io/aws-load-balancer-security-groups: "sg-53fae93f"

        # 额外的安全组列表,将被添加到所创建的 ELB 之上。
        # 添加时,会保留为 ELB 所专门创建的安全组。
        # 这样会确保每个 ELB 都有一个唯一的安全组 ID 和与之对应的允许规则记录,
        # 允许请求(服务流量和健康检查)发送到目标工作节点。
        # 这里顶一个安全组可以被多个服务共享。
        service.beta.kubernetes.io/aws-load-balancer-extra-security-groups: "sg-53fae93f,sg-42efd82e"

        # 用逗号分隔的一个键-值偶对列表,用来为负载均衡器选择目标节点
        service.beta.kubernetes.io/aws-load-balancer-target-node-labels: "ingress-gw,gw-name=public-api"

AWS 上网络负载均衡器支持

特性状态: Kubernetes v1.15 [beta]

要在 AWS 上使用网络负载均衡器,可以使用注解 service.beta.kubernetes.io/aws-load-balancer-type,将其取值设为 nlb

    metadata:
      name: my-service
      annotations:
        service.beta.kubernetes.io/aws-load-balancer-type: "nlb"

与经典弹性负载均衡器不同,网络负载均衡器(NLB)将客户端的 IP 地址转发到该节点。 如果服务的 .spec.externalTrafficPolicy 设置为 Cluster ,则客户端的 IP 地址不会传达到最终的 Pod。

通过将 .spec.externalTrafficPolicy 设置为 Local,客户端 IP 地址将传播到最终的 Pod, 但这可能导致流量分配不均。 没有针对特定 LoadBalancer 服务的任何 Pod 的节点将无法通过自动分配的 .spec.healthCheckNodePort 进行 NLB 目标组的运行状况检查,并且不会收到任何流量。

为了获得均衡流量,请使用 DaemonSet 或指定 Pod 反亲和性 使其不在同一节点上。

你还可以将 NLB 服务与内部负载均衡器 注解一起使用。

为了使客户端流量能够到达 NLB 后面的实例,使用以下 IP 规则修改了节点安全组:

RuleProtocolPort(s)IpRange(s)IpRange Description
Health CheckTCPNodePort(s) (.spec.healthCheckNodePort for .spec.externalTrafficPolicy = Local)Subnet CIDRkubernetes.io/rule/nlb/health=<loadBalancerName>
Client TrafficTCPNodePort(s).spec.loadBalancerSourceRanges (默认值为 0.0.0.0/0)kubernetes.io/rule/nlb/client=<loadBalancerName>
MTU DiscoveryICMP3,4.spec.loadBalancerSourceRanges (默认值为 0.0.0.0/0)kubernetes.io/rule/nlb/mtu=<loadBalancerName>

为了限制哪些客户端 IP 可以访问网络负载均衡器,请指定 loadBalancerSourceRanges

spec:
  loadBalancerSourceRanges:
    - "143.231.0.0/16"

有关弹性 IP 注解和更多其他常见用例, 请参阅AWS 负载均衡控制器文档

腾讯 Kubernetes 引擎(TKE)上的 CLB 注解

以下是在 TKE 上管理云负载均衡器的注解。

    metadata:
      name: my-service
      annotations:
        # 绑定负载均衡器到指定的节点。
        service.kubernetes.io/qcloud-loadbalancer-backends-label: key in (value1, value2)

        # 为已有负载均衡器添加 ID。
        service.kubernetes.io/tke-existed-lbid:lb-6swtxxxx

        # 负载均衡器(LB)的自定义参数尚不支持修改 LB 类型。
        service.kubernetes.io/service.extensiveParameters: ""

        # 自定义负载均衡监听器。
        service.kubernetes.io/service.listenerParameters: ""

        # 指定负载均衡类型。
        # 可用参数: classic (Classic Cloud Load Balancer) 或 application (Application Cloud Load Balancer)
        service.kubernetes.io/loadbalance-type: xxxxx

        # 指定公用网络带宽计费方法。
        # 可用参数: TRAFFIC_POSTPAID_BY_HOUR(bill-by-traffic) 和 BANDWIDTH_POSTPAID_BY_HOUR (bill-by-bandwidth).
        service.kubernetes.io/qcloud-loadbalancer-internet-charge-type: xxxxxx

        # 指定带宽参数 (取值范围: [1,2000] Mbps).
        service.kubernetes.io/qcloud-loadbalancer-internet-max-bandwidth-out: "10"

        # 当设置该注解时,负载均衡器将只注册正在运行 Pod 的节点,
        # 否则所有节点将会被注册。
        service.kubernetes.io/local-svc-only-bind-node-with-pod: true

ExternalName 类型

类型为 ExternalName 的服务将服务映射到 DNS 名称,而不是典型的选择算符,例如 my-service 或者 cassandra。 你可以使用 spec.externalName 参数指定这些服务。

例如,以下 Service 定义将 prod 名称空间中的 my-service 服务映射到 my.database.example.com

apiVersion: v1
kind: Service
metadata:
  name: my-service
  namespace: prod
spec:
  type: ExternalName
  externalName: my.database.example.com

当查找主机 my-service.prod.svc.cluster.local 时,集群 DNS 服务返回 CNAME 记录, 其值为 my.database.example.com。 访问 my-service 的方式与其他服务的方式相同,但主要区别在于重定向发生在 DNS 级别,而不是通过代理或转发。 如果以后你决定将数据库移到集群中,则可以启动其 Pod,添加适当的选择算符或端点以及更改服务的 type

外部 IP

如果外部的 IP 路由到集群中一个或多个 Node 上,Kubernetes Service 会被暴露给这些 externalIPs。 通过外部 IP(作为目的 IP 地址)进入到集群,打到 Service 的端口上的流量, 将会被路由到 Service 的 Endpoint 上。 externalIPs 不会被 Kubernetes 管理,它属于集群管理员的职责范畴。

根据 Service 的规定,externalIPs 可以同任意的 ServiceType 来一起指定。 在上面的例子中,my-service 可以在 "80.11.12.10:80"(externalIP:port) 上被客户端访问。

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app.kubernetes.io/name: MyApp
  ports:
    - name: http
      protocol: TCP
      port: 80
      targetPort: 9376
  externalIPs:
    - 80.11.12.10

粘性会话

如果你想确保来自特定客户端的连接每次都传递到同一个 Pod,你可以配置根据客户端 IP 地址来执行的会话亲和性。 阅读会话亲和性了解更多。

API 对象

Service 是 Kubernetes REST API 中的顶级资源。你可以找到有关 Service 对象 API 的更多详细信息。

虚拟 IP 寻址机制

阅读虚拟 IP 和 Service 代理以了解 Kubernetes 提供的使用虚拟 IP 地址公开服务的机制。

接下来

更多上下文:

2 - Ingress

使用一种能感知协议配置的机制来理解 URI、主机名称、路径和更多 Web 概念,使得 HTTP(或 HTTPS)网络服务可用。 Ingress 概念允许你通过 Kubernetes API 定义的规则将流量映射到不同的后端。

特性状态: Kubernetes v1.19 [stable]

Ingress 是对集群中服务的外部访问进行管理的 API 对象,典型的访问方式是 HTTP。

Ingress 可以提供负载均衡、SSL 终结和基于名称的虚拟托管。

术语

为了表达更加清晰,本指南定义了以下术语:

  • 节点(Node): Kubernetes 集群中的一台工作机器,是集群的一部分。
  • 集群(Cluster): 一组运行由 Kubernetes 管理的容器化应用程序的节点。 在此示例和在大多数常见的 Kubernetes 部署环境中,集群中的节点都不在公共网络中。
  • 边缘路由器(Edge Router): 在集群中强制执行防火墙策略的路由器。可以是由云提供商管理的网关,也可以是物理硬件。
  • 集群网络(Cluster Network): 一组逻辑的或物理的连接,根据 Kubernetes 网络模型在集群内实现通信。
  • 服务(Service):Kubernetes 服务(Service), 使用标签选择器(selectors)辨认一组 Pod。 除非另有说明,否则假定服务只具有在集群网络中可路由的虚拟 IP。

Ingress 是什么?

Ingress 公开从集群外部到集群内服务的 HTTP 和 HTTPS 路由。 流量路由由 Ingress 资源上定义的规则控制。

下面是一个将所有流量都发送到同一 Service 的简单 Ingress 示例:

ingress-diagram

图. Ingress

Ingress 可为 Service 提供外部可访问的 URL、负载均衡流量、终止 SSL/TLS,以及基于名称的虚拟托管。 Ingress 控制器 通常负责通过负载均衡器来实现 Ingress,尽管它也可以配置边缘路由器或其他前端来帮助处理流量。

Ingress 不会公开任意端口或协议。 将 HTTP 和 HTTPS 以外的服务公开到 Internet 时,通常使用 Service.Type=NodePortService.Type=LoadBalancer 类型的 Service。

环境准备

你必须拥有一个 Ingress 控制器 才能满足 Ingress 的要求。 仅创建 Ingress 资源本身没有任何效果。

你可能需要部署 Ingress 控制器,例如 ingress-nginx。 你可以从许多 Ingress 控制器 中进行选择。

理想情况下,所有 Ingress 控制器都应符合参考规范。但实际上,不同的 Ingress 控制器操作略有不同。

Ingress 资源

一个最小的 Ingress 资源示例:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: minimal-ingress
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  ingressClassName: nginx-example
  rules:
  - http:
      paths:
      - path: /testpath
        pathType: Prefix
        backend:
          service:
            name: test
            port:
              number: 80

Ingress 需要指定 apiVersionkindmetadataspec 字段。 Ingress 对象的命名必须是合法的 DNS 子域名名称。 关于如何使用配置文件,请参见部署应用配置容器管理资源。 Ingress 经常使用注解(annotations)来配置一些选项,具体取决于 Ingress 控制器,例如重写目标注解。 不同的 Ingress 控制器支持不同的注解。 查看你所选的 Ingress 控制器的文档,以了解其支持哪些注解。

Ingress 规约 提供了配置负载均衡器或者代理服务器所需的所有信息。 最重要的是,其中包含与所有传入请求匹配的规则列表。 Ingress 资源仅支持用于转发 HTTP(S) 流量的规则。

如果 ingressClassName 被省略,那么你应该定义一个默认 Ingress 类

有一些 Ingress 控制器不需要定义默认的 IngressClass。比如:Ingress-NGINX 控制器可以通过参数 --watch-ingress-without-class 来配置。 不过仍然推荐下文所示来设置默认的 IngressClass

Ingress 规则

每个 HTTP 规则都包含以下信息:

  • 可选的 host。在此示例中,未指定 host,因此该规则适用于通过指定 IP 地址的所有入站 HTTP 通信。 如果提供了 host(例如 foo.bar.com),则 rules 适用于该 host
  • 路径列表 paths(例如,/testpath),每个路径都有一个由 serviceNameservicePort 定义的关联后端。 在负载均衡器将流量定向到引用的服务之前,主机和路径都必须匹配传入请求的内容。
  • backend(后端)是 Service 文档中所述的服务和端口名称的组合。 与规则的 hostpath 匹配的对 Ingress 的 HTTP(和 HTTPS )请求将发送到列出的 backend

通常在 Ingress 控制器中会配置 defaultBackend(默认后端),以服务于无法与规约中 path 匹配的所有请求。

默认后端

没有设置规则的 Ingress 将所有流量发送到同一个默认后端,而 .spec.defaultBackend 则是在这种情况下处理请求的那个默认后端。 defaultBackend 通常是 Ingress 控制器的配置选项, 而非在 Ingress 资源中指定。 如果未设置任何的 .spec.rules,那么必须指定 .spec.defaultBackend。 如果未设置 defaultBackend,那么如何处理所有与规则不匹配的流量将交由 Ingress 控制器决定(请参考你的 Ingress 控制器的文档以了解它是如何处理那些流量的)。

如果没有 hostspaths 与 Ingress 对象中的 HTTP 请求匹配,则流量将被路由到默认后端。

资源后端

Resource 后端是一个引用,指向同一命名空间中的另一个 Kubernetes 资源,将其作为 Ingress 对象。 Resource 后端与 Service 后端是互斥的,在二者均被设置时会无法通过合法性检查。 Resource 后端的一种常见用法是将所有入站数据导向带有静态资产的对象存储后端。

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: ingress-resource-backend
spec:
  defaultBackend:
    resource:
      apiGroup: k8s.example.com
      kind: StorageBucket
      name: static-assets
  rules:
    - http:
        paths:
          - path: /icons
            pathType: ImplementationSpecific
            backend:
              resource:
                apiGroup: k8s.example.com
                kind: StorageBucket
                name: icon-assets

创建了如上的 Ingress 之后,你可以使用下面的命令查看它:

kubectl describe ingress ingress-resource-backend
Name:             ingress-resource-backend
Namespace:        default
Address:
Default backend:  APIGroup: k8s.example.com, Kind: StorageBucket, Name: static-assets
Rules:
  Host        Path  Backends
  ----        ----  --------
  *
              /icons   APIGroup: k8s.example.com, Kind: StorageBucket, Name: icon-assets
Annotations:  <none>
Events:       <none>

路径类型

Ingress 中的每个路径都需要有对应的路径类型(Path Type)。未明确设置 pathType 的路径无法通过合法性检查。当前支持的路径类型有三种:

  • ImplementationSpecific:对于这种路径类型,匹配方法取决于 IngressClass。 具体实现可以将其作为单独的 pathType 处理或者与 PrefixExact 类型作相同处理。

  • Exact:精确匹配 URL 路径,且区分大小写。

  • Prefix:基于以 / 分隔的 URL 路径前缀匹配。匹配区分大小写,并且对路径中的元素逐个完成。 路径元素指的是由 / 分隔符分隔的路径中的标签列表。 如果每个 p 都是请求路径 p 的元素前缀,则请求与路径 p 匹配。

示例

类型路径请求路径匹配与否?
Prefix/(所有路径)
Exact/foo/foo
Exact/foo/bar
Exact/foo/foo/
Exact/foo//foo
Prefix/foo/foo, /foo/
Prefix/foo//foo, /foo/
Prefix/aaa/bb/aaa/bbb
Prefix/aaa/bbb/aaa/bbb
Prefix/aaa/bbb//aaa/bbb是,忽略尾部斜线
Prefix/aaa/bbb/aaa/bbb/是,匹配尾部斜线
Prefix/aaa/bbb/aaa/bbb/ccc是,匹配子路径
Prefix/aaa/bbb/aaa/bbbxyz否,字符串前缀不匹配
Prefix/, /aaa/aaa/ccc是,匹配 /aaa 前缀
Prefix/, /aaa, /aaa/bbb/aaa/bbb是,匹配 /aaa/bbb 前缀
Prefix/, /aaa, /aaa/bbb/ccc是,匹配 / 前缀
Prefix/aaa/ccc否,使用默认后端
混合/foo (Prefix), /foo (Exact)/foo是,优选 Exact 类型

多重匹配

在某些情况下,Ingress 中的多条路径会匹配同一个请求。 这种情况下最长的匹配路径优先。 如果仍然有两条同等的匹配路径,则精确路径类型优先于前缀路径类型。

主机名通配符

主机名可以是精确匹配(例如 “foo.bar.com”)或者使用通配符来匹配 (例如 “*.foo.com”)。 精确匹配要求 HTTP host 头部字段与 host 字段值完全匹配。 通配符匹配则要求 HTTP host 头部字段与通配符规则中的后缀部分相同。

主机host 头部匹配与否?
*.foo.combar.foo.com基于相同的后缀匹配
*.foo.combaz.bar.foo.com不匹配,通配符仅覆盖了一个 DNS 标签
*.foo.comfoo.com不匹配,通配符仅覆盖了一个 DNS 标签
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: ingress-wildcard-host
spec:
  rules:
  - host: "foo.bar.com"
    http:
      paths:
      - pathType: Prefix
        path: "/bar"
        backend:
          service:
            name: service1
            port:
              number: 80
  - host: "*.foo.com"
    http:
      paths:
      - pathType: Prefix
        path: "/foo"
        backend:
          service:
            name: service2
            port:
              number: 80

Ingress 类

Ingress 可以由不同的控制器实现,通常使用不同的配置。 每个 Ingress 应当指定一个类,也就是一个对 IngressClass 资源的引用。 IngressClass 资源包含额外的配置,其中包括应当实现该类的控制器名称。

apiVersion: networking.k8s.io/v1
kind: IngressClass
metadata:
  name: external-lb
spec:
  controller: example.com/ingress-controller
  parameters:
    apiGroup: k8s.example.com
    kind: IngressParameters
    name: external-lb

IngressClass 中的 .spec.parameters 字段可用于引用其他资源以提供额外的相关配置。

参数(parameters)的具体类型取决于你在 .spec.controller 字段中指定的 Ingress 控制器。

IngressClass 的作用域

取决于你的 Ingress 控制器,你可能可以使用集群范围设置的参数或某个名字空间范围的参数。

IngressClass 的参数默认是集群范围的。

如果你设置了 .spec.parameters 字段且未设置 .spec.parameters.scope 字段,或是将 .spec.parameters.scope 字段设为了 Cluster, 那么该 IngressClass 所指代的即是一个集群作用域的资源。 参数的 kind(和 apiGroup 一起)指向一个集群作用域的 API(可能是一个定制资源(Custom Resource)),而它的 name 则为此 API 确定了一个具体的集群作用域的资源。

示例:

---
apiVersion: networking.k8s.io/v1
kind: IngressClass
metadata:
  name: external-lb-1
spec:
  controller: example.com/ingress-controller
  parameters:
    # 此 IngressClass 的配置定义在一个名为 “external-config-1” 的
    # ClusterIngressParameter(API 组为 k8s.example.net)资源中。
    # 这项定义告诉 Kubernetes 去寻找一个集群作用域的参数资源。
    scope: Cluster
    apiGroup: k8s.example.net
    kind: ClusterIngressParameter
    name: external-config-1

特性状态: Kubernetes v1.23 [stable]

如果你设置了 .spec.parameters 字段且将 .spec.parameters.scope 字段设为了 Namespace,那么该 IngressClass 将会引用一个命名空间作用域的资源。 .spec.parameters.namespace 必须和此资源所处的命名空间相同。

参数的 kind(和 apiGroup 一起)指向一个命名空间作用域的 API(例如:ConfigMap),而它的 name 则确定了一个位于你指定的命名空间中的具体的资源。

命名空间作用域的参数帮助集群操作者将控制细分到用于工作负载的各种配置中(比如:负载均衡设置、API 网关定义)。如果你使用集群作用域的参数,那么你必须从以下两项中选择一项执行:

  • 每次修改配置,集群操作团队需要批准其他团队的修改。
  • 集群操作团队定义具体的准入控制,比如 RBAC 角色与角色绑定,以使得应用程序团队可以修改集群作用域的配置参数资源。

IngressClass API 本身是集群作用域的。

这里是一个引用命名空间作用域的配置参数的 IngressClass 的示例:

---
apiVersion: networking.k8s.io/v1
kind: IngressClass
metadata:
  name: external-lb-2
spec:
  controller: example.com/ingress-controller
  parameters:
    # 此 IngressClass 的配置定义在一个名为 “external-config” 的
    # IngressParameter(API 组为 k8s.example.com)资源中,
    # 该资源位于 “external-configuration” 命名空间中。
    scope: Namespace
    apiGroup: k8s.example.com
    kind: IngressParameter
    namespace: external-configuration
    name: external-config

废弃的注解

在 Kubernetes 1.18 版本引入 IngressClass 资源和 ingressClassName 字段之前, Ingress 类是通过 Ingress 中的一个 kubernetes.io/ingress.class 注解来指定的。 这个注解从未被正式定义过,但是得到了 Ingress 控制器的广泛支持。

Ingress 中新的 ingressClassName 字段是该注解的替代品,但并非完全等价。 该注解通常用于引用实现该 Ingress 的控制器的名称,而这个新的字段则是对一个包含额外 Ingress 配置的 IngressClass 资源的引用,包括 Ingress 控制器的名称。

默认 Ingress 类

你可以将一个特定的 IngressClass 标记为集群默认 Ingress 类。 将一个 IngressClass 资源的 ingressclass.kubernetes.io/is-default-class 注解设置为 true 将确保新的未指定 ingressClassName 字段的 Ingress 能够分配为这个默认的 IngressClass.

有一些 Ingress 控制器不需要定义默认的 IngressClass。比如:Ingress-NGINX 控制器可以通过参数 --watch-ingress-without-class 来配置。 不过仍然推荐 设置默认的 IngressClass

apiVersion: networking.k8s.io/v1
kind: IngressClass
metadata:
  labels:
    app.kubernetes.io/component: controller
  name: nginx-example
  annotations:
    ingressclass.kubernetes.io/is-default-class: "true"
spec:
  controller: k8s.io/ingress-nginx

Ingress 类型

由单个 Service 来完成的 Ingress

现有的 Kubernetes 概念允许你暴露单个 Service (参见替代方案)。 你也可以通过指定无规则的默认后端来对 Ingress 进行此操作。

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: test-ingress
spec:
  defaultBackend:
    service:
      name: test
      port:
        number: 80

如果使用 kubectl apply -f 创建此 Ingress,则应该能够查看刚刚添加的 Ingress 的状态:

kubectl get ingress test-ingress
NAME           CLASS         HOSTS   ADDRESS         PORTS   AGE
test-ingress   external-lb   *       203.0.113.123   80      59s

其中 203.0.113.123 是由 Ingress 控制器分配以满足该 Ingress 的 IP。

简单扇出

一个扇出(fanout)配置根据请求的 HTTP URI 将来自同一 IP 地址的流量路由到多个 Service。 Ingress 允许你将负载均衡器的数量降至最低。例如,这样的设置:

ingress-fanout-diagram

图. Ingress 扇出

将需要一个如下所示的 Ingress:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: simple-fanout-example
spec:
  rules:
  - host: foo.bar.com
    http:
      paths:
      - path: /foo
        pathType: Prefix
        backend:
          service:
            name: service1
            port:
              number: 4200
      - path: /bar
        pathType: Prefix
        backend:
          service:
            name: service2
            port:
              number: 8080

当你使用 kubectl apply -f 创建 Ingress 时:

kubectl describe ingress simple-fanout-example
Name:             simple-fanout-example
Namespace:        default
Address:          178.91.123.132
Default backend:  default-http-backend:80 (10.8.2.3:8080)
Rules:
  Host         Path  Backends
  ----         ----  --------
  foo.bar.com
               /foo   service1:4200 (10.8.0.90:4200)
               /bar   service2:8080 (10.8.0.91:8080)
Annotations:
  nginx.ingress.kubernetes.io/rewrite-target:  /
Events:
  Type     Reason  Age                From                     Message
  ----     ------  ----               ----                     -------
  Normal   ADD     22s                loadbalancer-controller  default/test

Ingress 控制器将提供实现特定的负载均衡器来满足 Ingress, 只要 Service (service1service2) 存在。 当它这样做时,你会在 Address 字段看到负载均衡器的地址。

基于名称的虚拟托管

基于名称的虚拟主机支持将针对多个主机名的 HTTP 流量路由到同一 IP 地址上。

ingress-namebase-diagram

图. 基于名称实现虚拟托管的 Ingress

以下 Ingress 让后台负载均衡器基于 host 头部字段来路由请求。

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: name-virtual-host-ingress
spec:
  rules:
  - host: foo.bar.com
    http:
      paths:
      - pathType: Prefix
        path: "/"
        backend:
          service:
            name: service1
            port:
              number: 80
  - host: bar.foo.com
    http:
      paths:
      - pathType: Prefix
        path: "/"
        backend:
          service:
            name: service2
            port:
              number: 80

如果你创建的 Ingress 资源没有在 rules 中定义的任何 hosts,则可以匹配指向 Ingress 控制器 IP 地址的任何网络流量,而无需基于名称的虚拟主机。

例如,以下 Ingress 会将请求 first.bar.com 的流量路由到 service1,将请求 second.bar.com 的流量路由到 service2,而所有其他流量都会被路由到 service3

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: name-virtual-host-ingress-no-third-host
spec:
  rules:
  - host: first.bar.com
    http:
      paths:
      - pathType: Prefix
        path: "/"
        backend:
          service:
            name: service1
            port:
              number: 80
  - host: second.bar.com
    http:
      paths:
      - pathType: Prefix
        path: "/"
        backend:
          service:
            name: service2
            port:
              number: 80
  - http:
      paths:
      - pathType: Prefix
        path: "/"
        backend:
          service:
            name: service3
            port:
              number: 80

TLS

你可以通过设定包含 TLS 私钥和证书的Secret 来保护 Ingress。 Ingress 只支持单个 TLS 端口 443,并假定 TLS 连接终止于 Ingress 节点(与 Service 及其 Pod 之间的流量都以明文传输)。 如果 Ingress 中的 TLS 配置部分指定了不同的主机,那么它们将根据通过 SNI TLS 扩展指定的主机名(如果 Ingress 控制器支持 SNI)在同一端口上进行复用。 TLS Secret 的数据中必须包含用于 TLS 的以键名 tls.crt 保存的证书和以键名 tls.key 保存的私钥。 例如:

apiVersion: v1
kind: Secret
metadata:
  name: testsecret-tls
  namespace: default
data:
  tls.crt: base64 编码的证书
  tls.key: base64 编码的私钥
type: kubernetes.io/tls

在 Ingress 中引用此 Secret 将会告诉 Ingress 控制器使用 TLS 加密从客户端到负载均衡器的通道。 你需要确保创建的 TLS Secret 创建自包含 https-example.foo.com 的公用名称(CN)的证书。 这里的公共名称也被称为全限定域名(FQDN)。

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: tls-example-ingress
spec:
  tls:
  - hosts:
      - https-example.foo.com
    secretName: testsecret-tls
  rules:
  - host: https-example.foo.com
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: service1
            port:
              number: 80

负载均衡

Ingress 控制器启动引导时使用一些适用于所有 Ingress 的负载均衡策略设置,例如负载均衡算法、后端权重方案等。 更高级的负载均衡概念(例如持久会话、动态权重)尚未通过 Ingress 公开。 你可以通过用于服务的负载均衡器来获取这些功能。

值得注意的是,尽管健康检查不是通过 Ingress 直接暴露的,在 Kubernetes 中存在并行的概念,比如 就绪检查, 允许你实现相同的目的。 请检查特定控制器的说明文档(nginxGCE)以了解它们是怎样处理健康检查的。

更新 Ingress

要更新现有的 Ingress 以添加新的 Host,可以通过编辑资源来对其进行更新:

kubectl describe ingress test
Name:             test
Namespace:        default
Address:          178.91.123.132
Default backend:  default-http-backend:80 (10.8.2.3:8080)
Rules:
  Host         Path  Backends
  ----         ----  --------
  foo.bar.com
               /foo   service1:80 (10.8.0.90:80)
Annotations:
  nginx.ingress.kubernetes.io/rewrite-target:  /
Events:
  Type     Reason  Age                From                     Message
  ----     ------  ----               ----                     -------
  Normal   ADD     35s                loadbalancer-controller  default/test
kubectl edit ingress test

这一命令将打开编辑器,允许你以 YAML 格式编辑现有配置。 修改它来增加新的主机:

spec:
  rules:
  - host: foo.bar.com
    http:
      paths:
      - backend:
          serviceName: service1
          servicePort: 80
        path: /foo
        pathType: Prefix
  - host: bar.baz.com
    http:
      paths:
      - backend:
          serviceName: service2
          servicePort: 80
        path: /foo
        pathType: Prefix
..

保存更改后,kubectl 将更新 API 服务器中的资源,该资源将告诉 Ingress 控制器重新配置负载均衡器。

验证:

kubectl describe ingress test
Name:             test
Namespace:        default
Address:          178.91.123.132
Default backend:  default-http-backend:80 (10.8.2.3:8080)
Rules:
  Host         Path  Backends
  ----         ----  --------
  foo.bar.com
               /foo   service1:80 (10.8.0.90:80)
  bar.baz.com
               /foo   service2:80 (10.8.0.91:80)
Annotations:
  nginx.ingress.kubernetes.io/rewrite-target:  /
Events:
  Type     Reason  Age                From                     Message
  ----     ------  ----               ----                     -------
  Normal   ADD     45s                loadbalancer-controller  default/test

你也可以通过 kubectl replace -f 命令调用修改后的 Ingress yaml 文件来获得同样的结果。

跨可用区失败

不同的云厂商使用不同的技术来实现跨故障域的流量分布。详情请查阅相关 Ingress 控制器的文档。 请查看相关 Ingress 控制器的文档以了解详细信息。

替代方案

不直接使用 Ingress 资源,也有多种方法暴露 Service:

接下来

3 - Ingress 控制器

为了让 Ingress 在你的集群中工作, 必须有一个 Ingress 控制器正在运行。你需要选择至少一个 Ingress 控制器并确保其已被部署到你的集群中。 本页列出了你可以部署的常见 Ingress 控制器。

为了让 Ingress 资源工作,集群必须有一个正在运行的 Ingress 控制器。

与作为 kube-controller-manager 可执行文件的一部分运行的其他类型的控制器不同, Ingress 控制器不是随集群自动启动的。 基于此页面,你可选择最适合你的集群的 ingress 控制器实现。

Kubernetes 作为一个项目,目前支持和维护 AWSGCENginx Ingress 控制器。

其他控制器

使用多个 Ingress 控制器

你可以使用 Ingress 类在集群中部署任意数量的 Ingress 控制器。 请注意你的 Ingress 类资源的 .metadata.name 字段。 当你创建 Ingress 时,你需要用此字段的值来设置 Ingress 对象的 ingressClassName 字段(请参考 IngressSpec v1 reference)。 ingressClassName 是之前的注解做法的替代。

如果你不为 Ingress 指定 IngressClass,并且你的集群中只有一个 IngressClass 被标记为默认,那么 Kubernetes 会将此集群的默认 IngressClass 应用到 Ingress 上。 IngressClass。 你可以通过将 ingressclass.kubernetes.io/is-default-class 注解 的值设置为 "true" 来将一个 IngressClass 标记为集群默认。

理想情况下,所有 Ingress 控制器都应满足此规范,但各种 Ingress 控制器的操作略有不同。

接下来

4 - EndpointSlice

EndpointSlice API 是 Kubernetes 用于扩缩 Service 以处理大量后端的机制,还允许集群高效更新其健康后端的列表。
特性状态: Kubernetes v1.21 [stable]

Kubernetes 的端点切片(EndpointSlices) 提供了一种简单的方法来跟踪 Kubernetes 集群中的网络端点(network endpoints)。EndpointSlices 为 Endpoints(/zh-cn/docs/concepts/services-networking/service/#endpoints) 提供了一种可扩缩和可拓展的替代方案。

EndpointSlice API

在 Kubernetes 中,EndpointSlice 包含对一组网络端点的引用。 控制面会自动为设置了选择算符的 Kubernetes Service 创建 EndpointSlice。 这些 EndpointSlice 将包含对与 Service 选择算符匹配的所有 Pod 的引用。 EndpointSlice 通过唯一的协议、端口号和 Service 名称将网络端点组织在一起。 EndpointSlice 的名称必须是合法的 DNS 子域名

例如,下面是 Kubernetes Service example 所拥有的 EndpointSlice 对象示例。

apiVersion: discovery.k8s.io/v1
kind: EndpointSlice
metadata:
  name: example-abc
  labels:
    kubernetes.io/service-name: example
addressType: IPv4
ports:
  - name: http
    protocol: TCP
    port: 80
endpoints:
  - addresses:
      - "10.1.2.3"
    conditions:
      ready: true
    hostname: pod-1
    nodeName: node-1
    zone: us-west2-a

默认情况下,控制面创建和管理的 EndpointSlice 将包含不超过 100 个端点。 你可以使用 kube-controller-manager--max-endpoints-per-slice 标志设置此值,最大值为 1000。

当涉及如何路由内部流量时,EndpointSlice 可以充当 kube-proxy 的决策依据。

地址类型

EndpointSlice 支持三种地址类型:

  • IPv4
  • IPv6
  • FQDN (完全合格的域名)

每个 EndpointSlice 对象代表一个特定的 IP 地址类型。如果你有一个支持 IPv4 和 IPv6 的 Service, 那么将至少有两个 EndpointSlice 对象(一个用于 IPv4,一个用于 IPv6)。

状况

EndpointSlice API 存储了可能对使用者有用的、有关端点的状况。 这三个状况分别是 readyservingterminating

Ready(就绪)

ready 状况是映射 Pod 的 Ready 状况的。 对于处于运行中的 Pod,它的 Ready 状况被设置为 True,应该将此 EndpointSlice 状况也设置为 true。 出于兼容性原因,当 Pod 处于终止过程中,ready 永远不会为 true。 消费者应参考 serving 状况来检查处于终止中的 Pod 的就绪情况。 该规则的唯一例外是将 spec.publishNotReadyAddresses 设置为 true 的 Service。 这些 Service 的端点将始终将 ready 状况设置为 true

Serving(服务中)

特性状态: Kubernetes v1.22 [beta]

serving 状况与 ready 状况相同,不同之处在于它不考虑终止状态。 如果 EndpointSlice API 的使用者关心 Pod 终止时的就绪情况,就应检查此状况。

Terminating(终止中)

特性状态: Kubernetes v1.22 [beta]

Terminating 是表示端点是否处于终止中的状况。 对于 Pod 来说,这是设置了删除时间戳的 Pod。

拓扑信息

EndpointSlice 中的每个端点都可以包含一定的拓扑信息。 拓扑信息包括端点的位置,对应节点、可用区的信息。 这些信息体现为 EndpointSlices 的如下端点字段:

  • nodeName - 端点所在的 Node 名称;
  • zone - 端点所处的可用区。

管理

通常,控制面(尤其是端点切片的控制器) 会创建和管理 EndpointSlice 对象。EndpointSlice 对象还有一些其他使用场景, 例如作为服务网格(Service Mesh)的实现。 这些场景都会导致有其他实体或者控制器负责管理额外的 EndpointSlice 集合。

为了确保多个实体可以管理 EndpointSlice 而且不会相互产生干扰, Kubernetes 定义了标签 endpointslice.kubernetes.io/managed-by,用来标明哪个实体在管理某个 EndpointSlice。 端点切片控制器会在自己所管理的所有 EndpointSlice 上将该标签值设置为 endpointslice-controller.k8s.io。 管理 EndpointSlice 的其他实体也应该为此标签设置一个唯一值。

属主关系

在大多数场合下,EndpointSlice 都由某个 Service 所有, (因为)该端点切片正是为该服务跟踪记录其端点。这一属主关系是通过为每个 EndpointSlice 设置一个属主(owner)引用,同时设置 kubernetes.io/service-name 标签来标明的, 目的是方便查找隶属于某 Service 的所有 EndpointSlice。

EndpointSlice 镜像

在某些场合,应用会创建定制的 Endpoints 资源。为了保证这些应用不需要并发的更改 Endpoints 和 EndpointSlice 资源,集群的控制面将大多数 Endpoints 映射到对应的 EndpointSlice 之上。

控制面对 Endpoints 资源进行映射的例外情况有:

  • Endpoints 资源上标签 endpointslice.kubernetes.io/skip-mirror 值为 true
  • Endpoints 资源包含标签 control-plane.alpha.kubernetes.io/leader
  • 对应的 Service 资源不存在。
  • 对应的 Service 的选择算符不为空。

每个 Endpoints 资源可能会被转译到多个 EndpointSlices 中去。 当 Endpoints 资源中包含多个子网或者包含多个 IP 协议族(IPv4 和 IPv6)的端点时, 就有可能发生这种状况。 每个子网最多有 1000 个地址会被镜像到 EndpointSlice 中。

EndpointSlices 的分布问题

每个 EndpointSlice 都有一组端口值,适用于资源内的所有端点。 当为 Service 使用命名端口时,Pod 可能会就同一命名端口获得不同的端口号, 因而需要不同的 EndpointSlice。这有点像 Endpoints 用来对子网进行分组的逻辑。

控制面尝试尽量将 EndpointSlice 填满,不过不会主动地在若干 EndpointSlice 之间执行再平衡操作。这里的逻辑也是相对直接的:

  1. 列举所有现有的 EndpointSlices,移除那些不再需要的端点并更新那些已经变化的端点。
  2. 列举所有在第一步中被更改过的 EndpointSlices,用新增加的端点将其填满。
  3. 如果还有新的端点未被添加进去,尝试将这些端点添加到之前未更改的切片中, 或者创建新切片。

这里比较重要的是,与在 EndpointSlice 之间完成最佳的分布相比,第三步中更看重限制 EndpointSlice 更新的操作次数。例如,如果有 10 个端点待添加,有两个 EndpointSlice 中各有 5 个空位,上述方法会创建一个新的 EndpointSlice 而不是将现有的两个 EndpointSlice 都填满。换言之,与执行多个 EndpointSlice 更新操作相比较, 方法会优先考虑执行一个 EndpointSlice 创建操作。

由于 kube-proxy 在每个节点上运行并监视 EndpointSlice 状态,EndpointSlice 的每次变更都变得相对代价较高,因为这些状态变化要传递到集群中每个节点上。 这一方法尝试限制要发送到所有节点上的变更消息个数,即使这样做可能会导致有多个 EndpointSlice 没有被填满。

在实践中,上面这种并非最理想的分布是很少出现的。大多数被 EndpointSlice 控制器处理的变更都是足够小的,可以添加到某已有 EndpointSlice 中去的。 并且,假使无法添加到已有的切片中,不管怎样都很快就会创建一个新的 EndpointSlice 对象。Deployment 的滚动更新为重新为 EndpointSlice 打包提供了一个自然的机会,所有 Pod 及其对应的端点在这一期间都会被替换掉。

重复的端点

由于 EndpointSlice 变化的自身特点,端点可能会同时出现在不止一个 EndpointSlice 中。鉴于不同的 EndpointSlice 对象在不同时刻到达 Kubernetes 的监视/缓存中, 这种情况的出现是很自然的。

与 Endpoints 的比较

原来的 Endpoints API 提供了在 Kubernetes 中跟踪网络端点的一种简单而直接的方法。随着 Kubernetes 集群和服务逐渐开始为更多的后端 Pod 处理和发送请求, 原来的 API 的局限性变得越来越明显。最明显的是那些因为要处理大量网络端点而带来的挑战。

由于任一 Service 的所有网络端点都保存在同一个 Endpoints 对象中,这些 Endpoints 对象可能变得非常巨大。对于保持稳定的服务(长时间使用同一组端点),影响不太明显; 即便如此,Kubernetes 的一些使用场景也没有得到很好的服务。

当某 Service 存在很多后端端点并且该工作负载频繁扩缩或上线新更改时,对该 Service 的单个 Endpoints 对象的每次更新都意味着(在控制平面内以及在节点和 API 服务器之间)Kubernetes 集群组件之间会出现大量流量。 这种额外的流量在 CPU 使用方面也有开销。

使用 EndpointSlices 时,添加或移除单个 Pod 对于正监视变更的客户端会触发相同数量的更新, 但这些更新消息的大小在大规模场景下要小得多。

EndpointSlices 还支持围绕双栈网络和拓扑感知路由等新功能的创新。

接下来

5 - 拓扑感知提示

拓扑感知提示(Topology Aware Hints) 提供了一种机制来帮助将网络流量保持在其请求方所在的区域内。 在集群中的 Pod 之间优先选用相同区域的流量有助于提高可靠性、增强性能(网络延迟和吞吐量)或降低成本。
特性状态: Kubernetes v1.23 [beta]

拓扑感知提示包含客户怎么使用服务端点的建议,从而实现了拓扑感知的路由功能。 这种方法添加了元数据,以启用 EndpointSlice(或 Endpoints)对象的调用者, 这样,访问这些网络端点的请求流量就可以在它的发起点附近就近路由。

例如,你可以在一个地域内路由流量,以降低通信成本,或提高网络性能。

动机

Kubernetes 集群越来越多的部署到多区域环境中。 拓扑感知提示提供了一种把流量限制在它的发起区域之内的机制。 这个概念一般被称之为 “拓扑感知路由”。 在计算 服务(Service) 的端点时, EndpointSlice 控制器会评估每一个端点的拓扑(地域和区域),填充提示字段,并将其分配到某个区域。 集群组件,例如kube-proxy 就可以使用这些提示信息,并用他们来影响流量的路由(倾向于拓扑上相邻的端点)。

使用拓扑感知提示

你可以通过把注解 service.kubernetes.io/topology-aware-hints 的值设置为 auto, 来激活服务的拓扑感知提示功能。 这告诉 EndpointSlice 控制器在它认为安全的时候来设置拓扑提示。 重要的是,这并不能保证总会设置提示(hints)。

工作原理

此特性启用的功能分为两个组件:EndpointSlice 控制器和 kube-proxy。 本节概述每个组件如何实现此特性。

EndpointSlice 控制器

此特性开启后,EndpointSlice 控制器负责在 EndpointSlice 上设置提示信息。 控制器按比例给每个区域分配一定比例数量的端点。 这个比例来源于此区域中运行节点的 可分配 CPU 核心数。 例如,如果一个区域拥有 2 CPU 核心,而另一个区域只有 1 CPU 核心, 那控制器将给那个有 2 CPU 的区域分配两倍数量的端点。

以下示例展示了提供提示信息后 EndpointSlice 的样子:

apiVersion: discovery.k8s.io/v1
kind: EndpointSlice
metadata:
  name: example-hints
  labels:
    kubernetes.io/service-name: example-svc
addressType: IPv4
ports:
  - name: http
    protocol: TCP
    port: 80
endpoints:
  - addresses:
      - "10.1.2.3"
    conditions:
      ready: true
    hostname: pod-1
    zone: zone-a
    hints:
      forZones:
        - name: "zone-a"

kube-proxy

kube-proxy 组件依据 EndpointSlice 控制器设置的提示,过滤由它负责路由的端点。 在大多数场合,这意味着 kube-proxy 可以把流量路由到同一个区域的端点。 有时,控制器从某个不同的区域分配端点,以确保在多个区域之间更平均的分配端点。 这会导致部分流量被路由到其他区域。

保护措施

Kubernetes 控制平面和每个节点上的 kube-proxy,在使用拓扑感知提示功能前,会应用一些保护措施规则。 如果没有检出,kube-proxy 将无视区域限制,从集群中的任意节点上选择端点。

  1. 端点数量不足: 如果一个集群中,端点数量少于区域数量,控制器不创建任何提示。
  1. 不可能实现均衡分配: 在一些场合中,不可能实现端点在区域中的平衡分配。 例如,假设 zone-a 比 zone-b 大两倍,但只有 2 个端点, 那分配到 zone-a 的端点可能收到比 zone-b 多两倍的流量。 如果控制器不能确定此“期望的过载”值低于每一个区域可接受的阈值,控制器将不指派提示信息。 重要的是,这不是基于实时反馈。所以对于单独的端点仍有可能超载。
  1. 一个或多个节点信息不足: 如果任一节点没有设置标签 topology.kubernetes.io/zone, 或没有上报可分配的 CPU 数据,控制平面将不会设置任何拓扑感知提示, 继而 kube-proxy 也就不能通过区域过滤端点。
  1. 一个或多个端点没有设置区域提示: 当这类事情发生时, kube-proxy 会假设这是正在执行一个从/到拓扑感知提示的转移。 在这种场合下过滤Service 的端点是有风险的,所以 kube-proxy 回撤为使用所有的端点。
  1. 不在提示中的区域: 如果 kube-proxy 不能根据一个指示在它所在的区域中发现一个端点, 它回撤为使用所有节点的端点。当你的集群新增一个新的区域时,这种情况发生概率很高。

限制

  • 当 Service 的 externalTrafficPolicyinternalTrafficPolicy 设置值为 Local 时, 拓扑感知提示功能不可用。 你可以在一个集群的不同服务中使用这两个特性,但不能在同一个服务中这么做。
  • 这种方法不适用于大部分流量来自于一部分区域的服务。 相反的,这里假设入站流量将根据每个区域中节点的服务能力按比例的分配。
  • EndpointSlice 控制器在计算每一个区域的容量比例时,会忽略未就绪的节点。 在大量节点未就绪的场景下,这样做会带来非预期的结果。
  • EndpointSlice 控制器在计算每一个区域的部署比例时,并不会考虑 容忍度。 如果服务后台的 Pod 被限制只能运行在集群节点的一个子集上,这些信息并不会被使用。
  • 这种方法和自动扩展机制之间不能很好的协同工作。例如,如果大量流量来源于一个区域, 那只有分配到该区域的端点才可用来处理流量。这会导致 Pod 自动水平扩展 要么不能拾取此事件,要么新增 Pod 被启动到其他区域。

接下来

6 - 网络策略

如果你希望在 IP 地址或端口层面(OSI 第 3 层或第 4 层)控制网络流量, NetworkPolicy 可以让你为集群内以及 Pod 与外界之间的网络流量指定规则。 你的集群必须使用支持 NetworkPolicy 实施的网络插件。

如果你希望在 IP 地址或端口层面(OSI 第 3 层或第 4 层)控制网络流量, 则你可以考虑为集群中特定应用使用 Kubernetes 网络策略(NetworkPolicy)。 NetworkPolicy 是一种以应用为中心的结构,允许你设置如何允许 Pod 与网络上的各类网络“实体” (我们这里使用实体以避免过度使用诸如“端点”和“服务”这类常用术语, 这些术语在 Kubernetes 中有特定含义)通信。 NetworkPolicies 适用于一端或两端与 Pod 的连接,与其他连接无关。

Pod 可以通信的 Pod 是通过如下三个标识符的组合来辩识的:

  1. 其他被允许的 Pods(例外:Pod 无法阻塞对自身的访问)
  2. 被允许的名字空间
  3. IP 组块(例外:与 Pod 运行所在的节点的通信总是被允许的, 无论 Pod 或节点的 IP 地址)

在定义基于 Pod 或名字空间的 NetworkPolicy 时, 你会使用选择算符来设定哪些流量可以进入或离开与该算符匹配的 Pod。 另外,当创建基于 IP 的 NetworkPolicy 时,我们基于 IP 组块(CIDR 范围)来定义策略。

前置条件

网络策略通过网络插件来实现。 要使用网络策略,你必须使用支持 NetworkPolicy 的网络解决方案。 创建一个 NetworkPolicy 资源对象而没有控制器来使它生效的话,是没有任何作用的。

Pod 隔离的两种类型

Pod 有两种隔离: 出口的隔离和入口的隔离。它们涉及到可以建立哪些连接。 这里的“隔离”不是绝对的,而是意味着“有一些限制”。 另外的,“非隔离方向”意味着在所述方向上没有限制。这两种隔离(或不隔离)是独立声明的, 并且都与从一个 Pod 到另一个 Pod 的连接有关。

默认情况下,一个 Pod 的出口是非隔离的,即所有外向连接都是被允许的。如果有任何的 NetworkPolicy 选择该 Pod 并在其 policyTypes 中包含 “Egress”,则该 Pod 是出口隔离的, 我们称这样的策略适用于该 Pod 的出口。当一个 Pod 的出口被隔离时, 唯一允许的来自 Pod 的连接是适用于出口的 Pod 的某个 NetworkPolicy 的 egress 列表所允许的连接。 这些 egress 列表的效果是相加的。

默认情况下,一个 Pod 对入口是非隔离的,即所有入站连接都是被允许的。如果有任何的 NetworkPolicy 选择该 Pod 并在其 policyTypes 中包含 “Ingress”,则该 Pod 被隔离入口, 我们称这种策略适用于该 Pod 的入口。当一个 Pod 的入口被隔离时,唯一允许进入该 Pod 的连接是来自该 Pod 节点的连接和适用于入口的 Pod 的某个 NetworkPolicy 的 ingress 列表所允许的连接。这些 ingress 列表的效果是相加的。

网络策略是相加的,所以不会产生冲突。如果策略适用于 Pod 某一特定方向的流量, Pod 在对应方向所允许的连接是适用的网络策略所允许的集合。 因此,评估的顺序不影响策略的结果。

要允许从源 Pod 到目的 Pod 的连接,源 Pod 的出口策略和目的 Pod 的入口策略都需要允许连接。 如果任何一方不允许连接,建立连接将会失败。

NetworkPolicy 资源

参阅 NetworkPolicy 来了解资源的完整定义。

下面是一个 NetworkPolicy 的示例:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: test-network-policy
  namespace: default
spec:
  podSelector:
    matchLabels:
      role: db
  policyTypes:
    - Ingress
    - Egress
  ingress:
    - from:
        - ipBlock:
            cidr: 172.17.0.0/16
            except:
              - 172.17.1.0/24
        - namespaceSelector:
            matchLabels:
              project: myproject
        - podSelector:
            matchLabels:
              role: frontend
      ports:
        - protocol: TCP
          port: 6379
  egress:
    - to:
        - ipBlock:
            cidr: 10.0.0.0/24
      ports:
        - protocol: TCP
          port: 5978

必需字段:与所有其他的 Kubernetes 配置一样,NetworkPolicy 需要 apiVersionkindmetadata 字段。关于配置文件操作的一般信息, 请参考配置 Pod 以使用 ConfigMap对象管理

spec:NetworkPolicy 规约 中包含了在一个名字空间中定义特定网络策略所需的所有信息。

podSelector:每个 NetworkPolicy 都包括一个 podSelector, 它对该策略所适用的一组 Pod 进行选择。示例中的策略选择带有 "role=db" 标签的 Pod。 空的 podSelector 选择名字空间下的所有 Pod。

policyTypes:每个 NetworkPolicy 都包含一个 policyTypes 列表,其中包含 IngressEgress 或两者兼具。policyTypes 字段表示给定的策略是应用于进入所选 Pod 的入站流量还是来自所选 Pod 的出站流量,或两者兼有。 如果 NetworkPolicy 未指定 policyTypes 则默认情况下始终设置 Ingress; 如果 NetworkPolicy 有任何出口规则的话则设置 Egress

ingress:每个 NetworkPolicy 可包含一个 ingress 规则的白名单列表。 每个规则都允许同时匹配 fromports 部分的流量。示例策略中包含一条简单的规则: 它匹配某个特定端口,来自三个来源中的一个,第一个通过 ipBlock 指定,第二个通过 namespaceSelector 指定,第三个通过 podSelector 指定。

egress:每个 NetworkPolicy 可包含一个 egress 规则的白名单列表。 每个规则都允许匹配 toport 部分的流量。该示例策略包含一条规则, 该规则将指定端口上的流量匹配到 10.0.0.0/24 中的任何目的地。

所以,该网络策略示例:

  1. 隔离 "default" 名字空间下 "role=db" 的 Pod (如果它们不是已经被隔离的话)。

  2. (Ingress 规则)允许以下 Pod 连接到 "default" 名字空间下的带有 "role=db" 标签的所有 Pod 的 6379 TCP 端口:

    • "default" 名字空间下带有 "role=frontend" 标签的所有 Pod
    • 带有 "project=myproject" 标签的所有名字空间中的 Pod
    • IP 地址范围为 172.17.0.0–172.17.0.255 和 172.17.2.0–172.17.255.255 (即,除了 172.17.1.0/24 之外的所有 172.17.0.0/16)
  3. (Egress 规则)允许 “default” 命名空间中任何带有标签 “role=db” 的 Pod 到 CIDR 10.0.0.0/24 下 5978 TCP 端口的连接。

参阅声明网络策略演练了解更多示例。

选择器 tofrom 的行为

可以在 ingressfrom 部分或 egressto 部分中指定四种选择器:

podSelector:此选择器将在与 NetworkPolicy 相同的名字空间中选择特定的 Pod,应将其允许作为入站流量来源或出站流量目的地。

namespaceSelector:此选择器将选择特定的名字空间,应将所有 Pod 用作其入站流量来源或出站流量目的地。

namespaceSelector 和 podSelector:一个指定 namespaceSelectorpodSelectorto/from 条目选择特定名字空间中的特定 Pod。 注意使用正确的 YAML 语法;下面的策略:

  ...
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          user: alice
      podSelector:
        matchLabels:
          role: client
  ...

from 数组中仅包含一个元素,只允许来自标有 role=client 的 Pod 且该 Pod 所在的名字空间中标有 user=alice 的连接。但是 这项 策略:

  ...
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          user: alice
    - podSelector:
        matchLabels:
          role: client
  ...

from 数组中包含两个元素,允许来自本地名字空间中标有 role=client 的 Pod 的连接, 来自任何名字空间中标有 user=alice 的任何 Pod 的连接。

如有疑问,请使用 kubectl describe 查看 Kubernetes 如何解释该策略。

ipBlock:此选择器将选择特定的 IP CIDR 范围以用作入站流量来源或出站流量目的地。 这些应该是集群外部 IP,因为 Pod IP 存在时间短暂的且随机产生。

集群的入站和出站机制通常需要重写数据包的源 IP 或目标 IP。 在发生这种情况时,不确定在 NetworkPolicy 处理之前还是之后发生, 并且对于网络插件、云提供商、Service 实现等的不同组合,其行为可能会有所不同。

对入站流量而言,这意味着在某些情况下,你可以根据实际的原始源 IP 过滤传入的数据包, 而在其他情况下,NetworkPolicy 所作用的 源IP 则可能是 LoadBalancer 或 Pod 的节点等。

对于出站流量而言,这意味着从 Pod 到被重写为集群外部 IP 的 Service IP 的连接可能会或可能不会受到基于 ipBlock 的策略的约束。

默认策略

默认情况下,如果名字空间中不存在任何策略,则所有进出该名字空间中 Pod 的流量都被允许。 以下示例使你可以更改该名字空间中的默认行为。

默认拒绝所有入站流量

你可以通过创建选择所有容器但不允许任何进入这些容器的入站流量的 NetworkPolicy 来为名字空间创建 “default” 隔离策略。

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-ingress
spec:
  podSelector: {}
  policyTypes:
  - Ingress

这确保即使没有被任何其他 NetworkPolicy 选择的 Pod 仍将被隔离以进行入口。 此策略不影响任何 Pod 的出口隔离。

允许所有入站流量

如果你想允许一个命名空间中所有 Pod 的所有入站连接,你可以创建一个明确允许的策略。

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-all-ingress
spec:
  podSelector: {}
  ingress:
  - {}
  policyTypes:
  - Ingress

有了这个策略,任何额外的策略都不会导致到这些 Pod 的任何入站连接被拒绝。 此策略对任何 Pod 的出口隔离没有影响。

默认拒绝所有出站流量

你可以通过创建选择所有容器但不允许来自这些容器的任何出站流量的 NetworkPolicy 来为名字空间创建 “default” 隔离策略。

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-egress
spec:
  podSelector: {}
  policyTypes:
  - Egress

此策略可以确保即使没有被其他任何 NetworkPolicy 选择的 Pod 也不会被允许流出流量。 此策略不会更改任何 Pod 的入站流量隔离行为。

允许所有出站流量

如果要允许来自命名空间中所有 Pod 的所有连接, 则可以创建一个明确允许来自该命名空间中 Pod 的所有出站连接的策略。

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-all-egress
spec:
  podSelector: {}
  egress:
  - {}
  policyTypes:
  - Egress

有了这个策略,任何额外的策略都不会导致来自这些 Pod 的任何出站连接被拒绝。 此策略对进入任何 Pod 的隔离没有影响。

默认拒绝所有入站和所有出站流量

你可以为名字空间创建“默认”策略,以通过在该名字空间中创建以下 NetworkPolicy 来阻止所有入站和出站流量。

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-all
spec:
  podSelector: {}
  policyTypes:
  - Ingress
  - Egress

此策略可以确保即使没有被其他任何 NetworkPolicy 选择的 Pod 也不会被允许入站或出站流量。

SCTP 支持

特性状态: Kubernetes v1.20 [stable]

作为一个稳定特性,SCTP 支持默认是被启用的。 要在集群层面禁用 SCTP,你(或你的集群管理员)需要为 API 服务器指定 --feature-gates=SCTPSupport=false,... 来禁用 SCTPSupport 特性门控。 启用该特性门控后,用户可以将 NetworkPolicy 的 protocol 字段设置为 SCTP

针对某个端口范围

特性状态: Kubernetes v1.25 [stable]

在编写 NetworkPolicy 时,你可以针对一个端口范围而不是某个固定端口。

这一目的可以通过使用 endPort 字段来实现,如下例所示:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: multi-port-egress
  namespace: default
spec:
  podSelector:
    matchLabels:
      role: db
  policyTypes:
  - Egress
  egress:
  - to:
    - ipBlock:
        cidr: 10.0.0.0/24
    ports:
    - protocol: TCP
      port: 32000
      endPort: 32768

上面的规则允许名字空间 default 中所有带有标签 role=db 的 Pod 使用 TCP 协议与 10.0.0.0/24 范围内的 IP 通信,只要目标端口介于 32000 和 32768 之间就可以。

使用此字段时存在以下限制:

  • endPort 字段必须等于或者大于 port 字段的值。
  • 只有在定义了 port 时才能定义 endPort
  • 两个字段的设置值都只能是数字。

基于名字指向某名字空间

特性状态: Kubernetes 1.22 [stable]

只要 NamespaceDefaultLabelName 特性门控被启用, Kubernetes 控制面会在所有名字空间上设置一个不可变更的标签 kubernetes.io/metadata.name。该标签的值是名字空间的名称。

如果 NetworkPolicy 无法在某些对象字段中指向某名字空间, 你可以使用标准的标签方式来指向特定名字空间。

通过网络策略(至少目前还)无法完成的工作

到 Kubernetes 1.26 为止,NetworkPolicy API 还不支持以下功能, 不过你可能可以使用操作系统组件(如 SELinux、OpenVSwitch、IPTables 等等) 或者第七层技术(Ingress 控制器、服务网格实现)或准入控制器来实现一些替代方案。 如果你对 Kubernetes 中的网络安全性还不太了解,了解使用 NetworkPolicy API 还无法实现下面的用户场景是很值得的。

  • 强制集群内部流量经过某公用网关(这种场景最好通过服务网格或其他代理来实现);
  • 与 TLS 相关的场景(考虑使用服务网格或者 Ingress 控制器);
  • 特定于节点的策略(你可以使用 CIDR 来表达这一需求不过你无法使用节点在 Kubernetes 中的其他标识信息来辩识目标节点);
  • 基于名字来选择服务(不过,你可以使用 标签 来选择目标 Pod 或名字空间,这也通常是一种可靠的替代方案);
  • 创建或管理由第三方来实际完成的“策略请求”;
  • 实现适用于所有名字空间或 Pods 的默认策略(某些第三方 Kubernetes 发行版本或项目可以做到这点);
  • 高级的策略查询或者可达性相关工具;
  • 生成网络安全事件日志的能力(例如,被阻塞或接收的连接请求);
  • 显式地拒绝策略的能力(目前,NetworkPolicy 的模型默认采用拒绝操作, 其唯一的能力是添加允许策略);
  • 禁止本地回路或指向宿主的网络流量(Pod 目前无法阻塞 localhost 访问, 它们也无法禁止来自所在节点的访问请求)。

接下来

  • 参阅声明网络策略演练了解更多示例;
  • 有关 NetworkPolicy 资源所支持的常见场景的更多信息, 请参见此指南

7 - Windows 网络

Kubernetes 支持运行 Linux 或 Windows 节点。 你可以在统一集群内混布这两种节点。 本页提供了特定于 Windows 操作系统的网络概述。

Windows 容器网络

Windows 容器网络通过 CNI 插件暴露。 Windows 容器网络的工作方式与虚拟机类似。 每个容器都有一个连接到 Hyper-V 虚拟交换机(vSwitch)的虚拟网络适配器(vNIC)。 主机网络服务(Host Networking Service,HNS)和主机计算服务(Host Comute Service,HCS) 协同创建容器并将容器 vNIC 挂接到网络。 HCS 负责管理容器,而 HNS 负责管理以下网络资源:

  • 虚拟网络(包括创建 vSwitch)
  • Endpoint / vNIC
  • 命名空间
  • 包括数据包封装、负载均衡规则、ACL 和 NAT 规则在内的策略。

Windows HNS 和 vSwitch 实现命名空间划分,且可以按需为 Pod 或容器创建虚拟 NIC。 然而,诸如 DNS、路由和指标等许多配置将存放在 Windows 注册表数据库中, 而不是像 Linux 将这些配置作为文件存放在 /etc 内。 针对容器的 Windows 注册表与主机的注册表是分开的,因此将 /etc/resolv.conf 从主机映射到一个容器的类似概念与 Linux 上的效果不同。 这些必须使用容器环境中运行的 Windows API 进行配置。 因此,实现 CNI 时需要调用 HNS,而不是依赖文件映射将网络详情传递到 Pod 或容器中。

网络模式

Windows 支持五种不同的网络驱动/模式:L2bridge、L2tunnel、Overlay (Beta)、Transparent 和 NAT。 在 Windows 和 Linux 工作节点组成的异构集群中,你需要选择一个同时兼容 Windows 和 Linux 的网络方案。 下表列出了 Windows 支持的树外插件,并给出了何时使用每种 CNI 的建议:

网络驱动描述容器数据包修改网络插件网络插件特点
L2bridge容器挂接到一个外部 vSwitch。容器挂接到下层网络,但物理网络不需要了解容器的 MAC,因为这些 MAC 在入站/出站时被重写。MAC 被重写为主机 MAC,可使用 HNS OutboundNAT 策略将 IP 重写为主机 IP。win-bridgeAzure-CNI、Flannel host-gateway 使用 win-bridgewin-bridge 使用 L2bridge 网络模式,将容器连接到主机的下层,提供最佳性能。节点间连接需要用户定义的路由(UDR)。
L2Tunnel这是 L2bridge 的一种特例,但仅用在 Azure 上。所有数据包都会被发送到应用了 SDN 策略的虚拟化主机。MAC 被重写,IP 在下层网络上可见。Azure-CNIAzure-CNI 允许将容器集成到 Azure vNET,允许容器充分利用 Azure 虚拟网络所提供的能力集合。例如,安全地连接到 Azure 服务或使用 Azure NSG。参考 azure-cni 了解有关示例
Overlay容器被赋予一个 vNIC,连接到外部 vSwitch。每个上层网络都有自己的 IP 子网,由自定义 IP 前缀进行定义。该上层网络驱动使用 VXLAN 封装。用外部头进行封装。win-overlay、Flannel VXLAN(使用 win-overlay)当需要将虚拟容器网络与主机的下层隔离时(例如出于安全原因),应使用 win-overlay。如果你的数据中心的 IP 个数有限,可以将 IP 在不同的上层网络中重用(带有不同的 VNID 标记)。在 Windows Server 2019 上这个选项需要 KB4489899
Transparent(ovn-kubernetes 的特殊用例)需要一个外部 vSwitch。容器挂接到一个外部 vSwitch,由后者通过逻辑网络(逻辑交换机和路由器)实现 Pod 内通信。数据包通过 GENEVESTT 隧道进行封装,以到达其它主机上的 Pod。
数据包基于 OVN 网络控制器提供的隧道元数据信息被转发或丢弃。
南北向通信使用 NAT。
ovn-kubernetes通过 ansible 部署。通过 Kubernetes 策略可以实施分布式 ACL。支持 IPAM。无需 kube-proxy 即可实现负载均衡。无需 iptables/netsh 即可进行 NAT。
NAT(Kubernetes 中未使用容器被赋予一个 vNIC,连接到内部 vSwitch。DNS/DHCP 是使用一个名为 WinNAT 的内部组件实现的MAC 和 IP 重写为主机 MAC/IP。nat放在此处保持完整性。

如上所述,Windows 通过 VXLAN 网络后端Beta 支持;委派给 win-overlay) 和 host-gateway 网络后端(稳定支持;委派给 win-bridge) 也支持 FlannelCNI 插件

此插件支持委派给参考 CNI 插件(win-overlay、win-bridge)之一,配合使用 Windows 上的 Flannel 守护程序(Flanneld),以便自动分配节点子网租赁并创建 HNS 网络。 该插件读取自己的配置文件(cni.conf),并聚合 FlannelD 生成的 subnet.env 文件中的环境变量。 然后,委派给网络管道的参考 CNI 插件之一,并将包含节点分配子网的正确配置发送给 IPAM 插件(例如:host-local)。

对于 Node、Pod 和 Service 对象,TCP/UDP 流量支持以下网络流:

  • Pod → Pod(IP)
  • Pod → Pod(名称)
  • Pod → Service(集群 IP)
  • Pod → Service(PQDN,但前提是没有 ".")
  • Pod → Service(FQDN)
  • Pod → 外部(IP)
  • Pod → 外部(DNS)
  • Node → Pod
  • Pod → Node

IP 地址管理(IPAM)

Windows 支持以下 IPAM 选项:

负载均衡和 Service

Kubernetes Service 是一种抽象:定义了逻辑上的一组 Pod 和一种通过网络访问这些 Pod 的方式。 在包含 Windows 节点的集群中,你可以使用以下类别的 Service:

  • NodePort
  • ClusterIP
  • LoadBalancer
  • ExternalName

Windows 容器网络与 Linux 网络有着很重要的差异。 更多细节和背景信息,参考 Microsoft Windows 容器网络文档

在 Windows 上,你可以使用以下设置来配置 Service 和负载均衡行为:

Windows Service 设置
功能特性描述支持的 Windows 操作系统最低版本启用方式
会话亲和性确保每次都将来自特定客户端的连接传递到同一个 Pod。Windows Server 2022service.spec.sessionAffinity 设为 “ClientIP”
Direct Server Return (DSR)在负载均衡模式中 IP 地址修正和 LBNAT 直接发生在容器 vSwitch 端口;服务流量到达时源 IP 设置为原始 Pod IP。Windows Server 2019在 kube-proxy 中设置以下标志:--feature-gates="WinDSR=true" --enable-dsr=true
保留目标(Preserve-Destination)跳过服务流量的 DNAT,从而在到达后端 Pod 的数据包中保留目标服务的虚拟 IP。也会禁用节点间的转发。Windows Server,version 1903在服务注解中设置 "preserve-destination": "true" 并在 kube-proxy 中启用 DSR。
IPv4/IPv6 双栈网络进出集群和集群内通信都支持原生的 IPv4 间与 IPv6 间流量Windows Server 2019参考 IPv4/IPv6 双栈
客户端 IP 保留确保入站流量的源 IP 得到保留。也会禁用节点间转发。Windows Server 2019service.spec.externalTrafficPolicy 设置为 “Local” 并在 kube-proxy 中启用 DSR。

限制

Windows 节点不支持以下网络功能:

  • 主机网络模式
  • 从节点本身访问本地 NodePort(可以从其他节点或外部客户端进行访问)
  • 为同一 Service 提供 64 个以上后端 Pod(或不同目的地址)
  • 在连接到上层网络的 Windows Pod 之间使用 IPv6 通信
  • 非 DSR 模式中的本地流量策略(Local Traffic Policy)
  • 通过 win-overlaywin-bridge 使用 ICMP 协议,或使用 Azure-CNI 插件进行出站通信。
    具体而言,Windows 数据平面(VFP)不支持 ICMP 数据包转换,这意味着:
    • 指向同一网络内目的地址的 ICMP 数据包(例如 Pod 间的 ping 通信)可正常工作;
    • TCP/UDP 数据包可正常工作;
    • 通过远程网络指向其它地址的 ICMP 数据包(例如通过 ping 从 Pod 到外部公网的通信)无法被转换, 因此无法被路由回到这些数据包的源点;
    • 由于 TCP/UDP 数据包仍可被转换,所以在调试与外界的连接时, 你可以将 ping <destination> 替换为 curl <destination>

其他限制:

  • 由于缺少 CHECK 实现,Windows 参考网络插件 win-bridge 和 win-overlay 未实现 CNI 规约 的 v0.4.0 版本。
  • Flannel VXLAN CNI 插件在 Windows 上有以下限制:
    • 使用 Flannel v0.12.0(或更高版本)时,节点到 Pod 的连接仅适用于本地 Pod。
    • Flannel 仅限于使用 VNI 4096 和 UDP 端口 4789。 有关这些参数的更多详细信息,请参考官方的 Flannel VXLAN 后端文档。

8 - 服务内部流量策略

如果集群中的两个 Pod 想要通信,并且两个 Pod 实际上都在同一节点运行, 服务内部流量策略 可以将网络流量限制在该节点内。 通过集群网络避免流量往返有助于提高可靠性、增强性能(网络延迟和吞吐量)或降低成本。
特性状态: Kubernetes v1.23 [beta]

服务内部流量策略开启了内部流量限制,将内部流量只路由到发起方所处节点内的服务端点。 这里的”内部“流量指当前集群中的 Pod 所发起的流量。 这种机制有助于节省开销,提升效率。

使用服务内部流量策略

ServiceInternalTrafficPolicy 特性门控 是 Beta 功能,默认启用。 启用该功能后,你就可以通过将 Service.spec.internalTrafficPolicy 项设置为 Local, 来为它指定一个内部专用的流量策略。 此设置就相当于告诉 kube-proxy 对于集群内部流量只能使用本地的服务端口。

以下示例展示了把 Service 的 .spec.internalTrafficPolicy 项设为 Local 时, Service 的样子:

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app.kubernetes.io/name: MyApp
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376
  internalTrafficPolicy: Local

工作原理

kube-proxy 基于 spec.internalTrafficPolicy 的设置来过滤路由的目标服务端点。 当它的值设为 Local 时,只选择节点本地的服务端点。 当它的值设为 Cluster 或缺省时,则选择所有的服务端点。 启用特性门控 ServiceInternalTrafficPolicy 后, spec.internalTrafficPolicy 的值默认设为 Cluster

接下来

9 - Service 与 Pod 的 DNS

你的工作负载可以使用 DNS 发现集群内的 Service,本页说明具体工作原理。

Kubernetes 为 Service 和 Pod 创建 DNS 记录。 你可以使用一致的 DNS 名称而非 IP 地址访问 Service。

Kubernetes DNS 除了在集群上调度 DNS Pod 和 Service, 还配置 kubelet 以告知各个容器使用 DNS Service 的 IP 来解析 DNS 名称。

集群中定义的每个 Service (包括 DNS 服务器自身)都被赋予一个 DNS 名称。 默认情况下,客户端 Pod 的 DNS 搜索列表会包含 Pod 自身的名字空间和集群的默认域。

Service 的名字空间

DNS 查询可能因为执行查询的 Pod 所在的名字空间而返回不同的结果。 不指定名字空间的 DNS 查询会被限制在 Pod 所在的名字空间内。 要访问其他名字空间中的 Service,需要在 DNS 查询中指定名字空间。

例如,假定名字空间 test 中存在一个 Pod,prod 名字空间中存在一个服务 data

Pod 查询 data 时没有返回结果,因为使用的是 Pod 的名字空间 test

Pod 查询 data.prod 时则会返回预期的结果,因为查询中指定了名字空间。

DNS 查询可以使用 Pod 中的 /etc/resolv.conf 展开。kubelet 会为每个 Pod 生成此文件。例如,对 data 的查询可能被展开为 data.test.svc.cluster.localsearch 选项的取值会被用来展开查询。要进一步了解 DNS 查询,可参阅 resolv.conf 手册页面

nameserver 10.32.0.10
search <namespace>.svc.cluster.local svc.cluster.local cluster.local
options ndots:5

概括起来,名字空间 test 中的 Pod 可以成功地解析 data.prod 或者 data.prod.svc.cluster.local

DNS 记录

哪些对象会获得 DNS 记录呢?

  1. Services
  2. Pods

以下各节详细介绍已支持的 DNS 记录类型和布局。 其它布局、名称或者查询即使碰巧可以工作,也应视为实现细节, 将来很可能被更改而且不会因此发出警告。 有关最新规范请查看 Kubernetes 基于 DNS 的服务发现

Service

A/AAAA 记录

“普通” Service(除了无头 Service)会以 my-svc.my-namespace.svc.cluster-domain.example 这种名字的形式被分配一个 DNS A 或 AAAA 记录,取决于 Service 的 IP 协议族。 该名称会解析成对应 Service 的集群 IP。

“无头(Headless)” Service (没有集群 IP)也会以 my-svc.my-namespace.svc.cluster-domain.example 这种名字的形式被指派一个 DNS A 或 AAAA 记录, 具体取决于 Service 的 IP 协议族。 与普通 Service 不同,这一记录会被解析成对应 Service 所选择的 Pod IP 的集合。 客户端要能够使用这组 IP,或者使用标准的轮转策略从这组 IP 中进行选择。

SRV 记录

Kubernetes 根据普通 Service 或 Headless Service 中的命名端口创建 SRV 记录。每个命名端口, SRV 记录格式为 _my-port-name._my-port-protocol.my-svc.my-namespace.svc.cluster-domain.example。 普通 Service,该记录会被解析成端口号和域名:my-svc.my-namespace.svc.cluster-domain.example。 无头 Service,该记录会被解析成多个结果,及该服务的每个后端 Pod 各一个 SRV 记录, 其中包含 Pod 端口号和格式为 auto-generated-name.my-svc.my-namespace.svc.cluster-domain.example 的域名。

Pod

A/AAAA 记录

一般而言,Pod 会对应如下 DNS 名字解析:

pod-ip-address.my-namespace.pod.cluster-domain.example

例如,对于一个位于 default 名字空间,IP 地址为 172.17.0.3 的 Pod, 如果集群的域名为 cluster.local,则 Pod 会对应 DNS 名称:

172-17-0-3.default.pod.cluster.local

通过 Service 暴露出来的所有 Pod 都会有如下 DNS 解析名称可用:

pod-ip-address.service-name.my-namespace.svc.cluster-domain.example

Pod 的 hostname 和 subdomain 字段

当前,创建 Pod 时其主机名取自 Pod 的 metadata.name 值。

Pod 规约中包含一个可选的 hostname 字段,可以用来指定 Pod 的主机名。 当这个字段被设置时,它将优先于 Pod 的名字成为该 Pod 的主机名。 举个例子,给定一个 hostname 设置为 "my-host" 的 Pod, 该 Pod 的主机名将被设置为 "my-host"。

Pod 规约还有一个可选的 subdomain 字段,可以用来指定 Pod 的子域名。 举个例子,某 Pod 的 hostname 设置为 “foo”,subdomain 设置为 “bar”, 在名字空间 “my-namespace” 中对应的完全限定域名(FQDN)为 “foo.bar.my-namespace.svc.cluster-domain.example”。

示例:

apiVersion: v1
kind: Service
metadata:
  name: default-subdomain
spec:
  selector:
    name: busybox
  clusterIP: None
  ports:
  - name: foo # 实际上不需要指定端口号
    port: 1234
    targetPort: 1234
---
apiVersion: v1
kind: Pod
metadata:
  name: busybox1
  labels:
    name: busybox
spec:
  hostname: busybox-1
  subdomain: default-subdomain
  containers:
  - image: busybox:1.28
    command:
      - sleep
      - "3600"
    name: busybox
---
apiVersion: v1
kind: Pod
metadata:
  name: busybox2
  labels:
    name: busybox
spec:
  hostname: busybox-2
  subdomain: default-subdomain
  containers:
  - image: busybox:1.28
    command:
      - sleep
      - "3600"
    name: busybox

如果某无头 Service 与某 Pod 在同一个名字空间中,且它们具有相同的子域名, 集群的 DNS 服务器也会为该 Pod 的全限定主机名返回 A 记录或 AAAA 记录。 例如,在同一个名字空间中,给定一个主机名为 “busybox-1”、 子域名设置为 “default-subdomain” 的 Pod,和一个名称为 “default-subdomain” 的无头 Service,Pod 将看到自己的 FQDN 为 "busybox-1.default-subdomain.my-namespace.svc.cluster-domain.example"。 DNS 会为此名字提供一个 A 记录或 AAAA 记录,指向该 Pod 的 IP。 “busybox1” 和 “busybox2” 这两个 Pod 分别具有它们自己的 A 或 AAAA 记录。

EndpointSlice 对象可以为任何端点地址及其 IP 指定 hostname

Pod 的 setHostnameAsFQDN 字段

特性状态: Kubernetes v1.22 [stable]

当 Pod 配置为具有全限定域名 (FQDN) 时,其主机名是短主机名。 例如,如果你有一个具有完全限定域名 busybox-1.default-subdomain.my-namespace.svc.cluster-domain.example 的 Pod, 则默认情况下,该 Pod 内的 hostname 命令返回 busybox-1,而 hostname --fqdn 命令返回 FQDN。

当你在 Pod 规约中设置了 setHostnameAsFQDN: true 时,kubelet 会将 Pod 的全限定域名(FQDN)作为该 Pod 的主机名记录到 Pod 所在名字空间。 在这种情况下,hostnamehostname --fqdn 都会返回 Pod 的全限定域名。

Pod 的 DNS 策略

DNS 策略可以逐个 Pod 来设定。目前 Kubernetes 支持以下特定 Pod 的 DNS 策略。 这些策略可以在 Pod 规约中的 dnsPolicy 字段设置:

  • "Default": Pod 从运行所在的节点继承名称解析配置。 参考相关讨论获取更多信息。
  • "ClusterFirst": 与配置的集群域后缀不匹配的任何 DNS 查询(例如 "www.kubernetes.io") 都会由 DNS 服务器转发到上游名称服务器。集群管理员可能配置了额外的存根域和上游 DNS 服务器。 参阅相关讨论 了解在这些场景中如何处理 DNS 查询的信息。
  • "ClusterFirstWithHostNet": 对于以 hostNetwork 方式运行的 Pod,应将其 DNS 策略显式设置为 "ClusterFirstWithHostNet"。否则,以 hostNetwork 方式和 "ClusterFirst" 策略运行的 Pod 将会做出回退至 "Default" 策略的行为。
    • 注意:这在 Windows 上不支持。 有关详细信息,请参见下文
  • "None": 此设置允许 Pod 忽略 Kubernetes 环境中的 DNS 设置。Pod 会使用其 dnsConfig 字段所提供的 DNS 设置。 参见 Pod 的 DNS 配置节。

下面的示例显示了一个 Pod,其 DNS 策略设置为 "ClusterFirstWithHostNet", 因为它已将 hostNetwork 设置为 true

apiVersion: v1
kind: Pod
metadata:
  name: busybox
  namespace: default
spec:
  containers:
  - image: busybox:1.28
    command:
      - sleep
      - "3600"
    imagePullPolicy: IfNotPresent
    name: busybox
  restartPolicy: Always
  hostNetwork: true
  dnsPolicy: ClusterFirstWithHostNet

Pod 的 DNS 配置

特性状态: Kubernetes v1.14 [stable]

Pod 的 DNS 配置可让用户对 Pod 的 DNS 设置进行更多控制。

dnsConfig 字段是可选的,它可以与任何 dnsPolicy 设置一起使用。 但是,当 Pod 的 dnsPolicy 设置为 "None" 时,必须指定 dnsConfig 字段。

用户可以在 dnsConfig 字段中指定以下属性:

  • nameservers:将用作于 Pod 的 DNS 服务器的 IP 地址列表。 最多可以指定 3 个 IP 地址。当 Pod 的 dnsPolicy 设置为 "None" 时, 列表必须至少包含一个 IP 地址,否则此属性是可选的。 所列出的服务器将合并到从指定的 DNS 策略生成的基本名称服务器,并删除重复的地址。

  • searches:用于在 Pod 中查找主机名的 DNS 搜索域的列表。此属性是可选的。 指定此属性时,所提供的列表将合并到根据所选 DNS 策略生成的基本搜索域名中。 重复的域名将被删除。Kubernetes 最多允许 6 个搜索域。

  • options:可选的对象列表,其中每个对象可能具有 name 属性(必需)和 value 属性(可选)。 此属性中的内容将合并到从指定的 DNS 策略生成的选项。 重复的条目将被删除。

以下是具有自定义 DNS 设置的 Pod 示例:

apiVersion: v1
kind: Pod
metadata:
  namespace: default
  name: dns-example
spec:
  containers:
    - name: test
      image: nginx
  dnsPolicy: "None"
  dnsConfig:
    nameservers:
      - 1.2.3.4
    searches:
      - ns1.svc.cluster-domain.example
      - my.dns.search.suffix
    options:
      - name: ndots
        value: "2"
      - name: edns0

创建上面的 Pod 后,容器 test 会在其 /etc/resolv.conf 文件中获取以下内容:

nameserver 1.2.3.4
search ns1.svc.cluster-domain.example my.dns.search.suffix
options ndots:2 edns0

对于 IPv6 设置,搜索路径和名称服务器应按以下方式设置:

kubectl exec -it dns-example -- cat /etc/resolv.conf

输出类似于:

nameserver 2001:db8:30::a
search default.svc.cluster-domain.example svc.cluster-domain.example cluster-domain.example
options ndots:5

DNS 搜索域列表限制

特性状态: Kubernetes 1.26 [beta]

Kubernetes 本身不限制 DNS 配置,最多可支持 32 个搜索域列表,所有搜索域的总长度不超过 2048。 此限制分别适用于节点的解析器配置文件、Pod 的 DNS 配置和合并的 DNS 配置。

Windows 节点上的 DNS 解析

  • 在 Windows 节点上运行的 Pod 不支持 ClusterFirstWithHostNet。 Windows 将所有带有 . 的名称视为全限定域名(FQDN)并跳过全限定域名(FQDN)解析。
  • 在 Windows 上,可以使用的 DNS 解析器有很多。 由于这些解析器彼此之间会有轻微的行为差别,建议使用 Resolve-DNSName powershell cmdlet 进行名称查询解析。
  • 在 Linux 上,有一个 DNS 后缀列表,当解析全名失败时可以使用。 在 Windows 上,你只能有一个 DNS 后缀, 即与该 Pod 的命名空间相关联的 DNS 后缀(例如:mydns.svc.cluster.local)。 Windows 可以解析全限定域名(FQDN),和使用了该 DNS 后缀的 Services 或者网络名称。 例如,在 default 命名空间中生成一个 Pod,该 Pod 会获得的 DNS 后缀为 default.svc.cluster.local。 在 Windows 的 Pod 中,你可以解析 kubernetes.default.svc.cluster.localkubernetes, 但是不能解析部分限定名称(kubernetes.defaultkubernetes.default.svc)。

接下来

有关管理 DNS 配置的指导, 请查看配置 DNS 服务

10 - IPv4/IPv6 双协议栈

Kubernetes 允许你配置单协议栈 IPv4 网络、单协议栈 IPv6 网络或同时激活这两种网络的双协议栈网络。本页说明具体配置方法。
特性状态: Kubernetes v1.23 [stable]

IPv4/IPv6 双协议栈网络能够将 IPv4 和 IPv6 地址分配给 PodService

从 1.21 版本开始,Kubernetes 集群默认启用 IPv4/IPv6 双协议栈网络, 以支持同时分配 IPv4 和 IPv6 地址。

支持的功能

Kubernetes 集群的 IPv4/IPv6 双协议栈可提供下面的功能:

  • 双协议栈 pod 网络 (每个 pod 分配一个 IPv4 和 IPv6 地址)
  • IPv4 和 IPv6 启用的服务
  • Pod 的集群外出口通过 IPv4 和 IPv6 路由

先决条件

为了使用 IPv4/IPv6 双栈的 Kubernetes 集群,需要满足以下先决条件:

  • Kubernetes 1.20 版本或更高版本,有关更早 Kubernetes 版本的使用双栈服务的信息, 请参考对应版本的 Kubernetes 文档。
  • 提供商支持双协议栈网络(云提供商或其他提供商必须能够为 Kubernetes 节点提供可路由的 IPv4/IPv6 网络接口)
  • 支持双协议栈的网络插件

配置 IPv4/IPv6 双协议栈

如果配置 IPv4/IPv6 双栈,请分配双栈集群网络:

  • kube-apiserver:
    • --service-cluster-ip-range=<IPv4 CIDR>,<IPv6 CIDR>
  • kube-controller-manager:
    • --cluster-cidr=<IPv4 CIDR>,<IPv6 CIDR>
    • --service-cluster-ip-range=<IPv4 CIDR>,<IPv6 CIDR>
    • --node-cidr-mask-size-ipv4|--node-cidr-mask-size-ipv6 对于 IPv4 默认为 /24, 对于 IPv6 默认为 /64
  • kube-proxy:
    • --cluster-cidr=<IPv4 CIDR>,<IPv6 CIDR>
  • kubelet:
    • 当没有 --cloud-provider 时,管理员可以通过 --node-ip 来传递逗号分隔的 IP 地址, 为该节点手动配置双栈 .status.addresses。 如果 Pod 以 HostNetwork 模式在该节点上运行,则 Pod 会用 .status.podIPs 字段来报告它的 IP 地址。 一个节点中的所有 podIP 都会匹配该节点的由 .status.addresses 字段定义的 IP 组。

服务

你可以使用 IPv4 或 IPv6 地址来创建 Service

服务的地址族默认为第一个服务集群 IP 范围的地址族(通过 kube-apiserver 的 --service-cluster-ip-range 参数配置)。

当你定义服务时,可以选择将其配置为双栈。若要指定所需的行为,你可以设置 .spec.ipFamilyPolicy 字段为以下值之一:

  • SingleStack:单栈服务。控制面使用第一个配置的服务集群 IP 范围为服务分配集群 IP。
  • PreferDualStack
    • 为服务分配 IPv4 和 IPv6 集群 IP 地址。
  • RequireDualStack:从 IPv4 和 IPv6 的地址范围分配服务的 .spec.ClusterIPs
    • 从基于在 .spec.ipFamilies 数组中第一个元素的地址族的 .spec.ClusterIPs 列表中选择 .spec.ClusterIP

如果你想要定义哪个 IP 族用于单栈或定义双栈 IP 族的顺序,可以通过设置 服务上的可选字段 .spec.ipFamilies 来选择地址族。

你可以设置 .spec.ipFamily 为以下任何数组值:

  • ["IPv4"]
  • ["IPv6"]
  • ["IPv4","IPv6"] (双栈)
  • ["IPv6","IPv4"] (双栈)

你所列出的第一个地址族用于原来的 .spec.ClusterIP 字段。

双栈服务配置场景

以下示例演示多种双栈服务配置场景下的行为。

新服务的双栈选项

  1. 此服务规约中没有显式设定 .spec.ipFamilyPolicy。当你创建此服务时,Kubernetes 从所配置的第一个 service-cluster-ip-range 中为服务分配一个集群 IP,并设置 .spec.ipFamilyPolicySingleStack。 (无选择算符的服务无头服务的行为方式 与此相同。)

    apiVersion: v1
       kind: Service
       metadata:
         name: my-service
         labels:
           app.kubernetes.io/name: MyApp
       spec:
         selector:
           app.kubernetes.io/name: MyApp
         ports:
           - protocol: TCP
             port: 80
       
  1. 此服务规约显式地将 .spec.ipFamilyPolicy 设置为 PreferDualStack。 当你在双栈集群上创建此服务时,Kubernetes 会为该服务分配 IPv4 和 IPv6 地址。 控制平面更新服务的 .spec 以记录 IP 地址分配。 字段 .spec.ClusterIPs 是主要字段,包含两个分配的 IP 地址;.spec.ClusterIP 是次要字段, 其取值从 .spec.ClusterIPs 计算而来。

    • 对于 .spec.ClusterIP 字段,控制面记录来自第一个服务集群 IP 范围 对应的地址族的 IP 地址。
    • 对于单协议栈的集群,.spec.ClusterIPs.spec.ClusterIP 字段都 仅仅列出一个地址。
    • 对于启用了双协议栈的集群,将 .spec.ipFamilyPolicy 设置为 RequireDualStack 时,其行为与 PreferDualStack 相同。
    apiVersion: v1
       kind: Service
       metadata:
         name: my-service
         labels:
           app.kubernetes.io/name: MyApp
       spec:
         ipFamilyPolicy: PreferDualStack
         selector:
           app.kubernetes.io/name: MyApp
         ports:
           - protocol: TCP
             port: 80
       
  1. 下面的服务规约显式地在 .spec.ipFamilies 中指定 IPv6IPv4,并 将 .spec.ipFamilyPolicy 设定为 PreferDualStack。 当 Kubernetes 为 .spec.ClusterIPs 分配一个 IPv6 和一个 IPv4 地址时, .spec.ClusterIP 被设置成 IPv6 地址,因为它是 .spec.ClusterIPs 数组中的第一个元素, 覆盖其默认值。

    apiVersion: v1
       kind: Service
       metadata:
         name: my-service
         labels:
           app.kubernetes.io/name: MyApp
       spec:
         ipFamilyPolicy: PreferDualStack
         ipFamilies:
         - IPv6
         - IPv4
         selector:
           app.kubernetes.io/name: MyApp
         ports:
           - protocol: TCP
             port: 80
       

现有服务的双栈默认值

下面示例演示了在服务已经存在的集群上新启用双栈时的默认行为。 (将现有集群升级到 1.21 或者更高版本会启用双协议栈支持。)

  1. 在集群上启用双栈时,控制面会将现有服务(无论是 IPv4 还是 IPv6)配置 .spec.ipFamilyPolicySingleStack 并设置 .spec.ipFamilies 为服务的当前地址族。

    apiVersion: v1
       kind: Service
       metadata:
         name: my-service
         labels:
           app.kubernetes.io/name: MyApp
       spec:
         selector:
           app.kubernetes.io/name: MyApp
         ports:
           - protocol: TCP
             port: 80
       

    你可以通过使用 kubectl 检查现有服务来验证此行为。

    kubectl get svc my-service -o yaml
    
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        app.kubernetes.io/name: MyApp
      name: my-service
    spec:
      clusterIP: 10.0.197.123
      clusterIPs:
      - 10.0.197.123
      ipFamilies:
      - IPv4
      ipFamilyPolicy: SingleStack
      ports:
      - port: 80
        protocol: TCP
        targetPort: 80
      selector:
        app.kubernetes.io/name: MyApp
      type: ClusterIP
    status:
      loadBalancer: {}
    
  1. 在集群上启用双栈时,带有选择算符的现有 无头服务 由控制面设置 .spec.ipFamilyPolicySingleStack 并设置 .spec.ipFamilies 为第一个服务集群 IP 范围的地址族(通过配置 kube-apiserver 的 --service-cluster-ip-range 参数),即使 .spec.ClusterIP 的设置值为 None 也如此。

    apiVersion: v1
       kind: Service
       metadata:
         name: my-service
         labels:
           app.kubernetes.io/name: MyApp
       spec:
         selector:
           app.kubernetes.io/name: MyApp
         ports:
           - protocol: TCP
             port: 80
       

    你可以通过使用 kubectl 检查带有选择算符的现有无头服务来验证此行为。

    kubectl get svc my-service -o yaml
    
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        app.kubernetes.io/name: MyApp
      name: my-service
    spec:
      clusterIP: None
      clusterIPs:
      - None
      ipFamilies:
      - IPv4
      ipFamilyPolicy: SingleStack
      ports:
      - port: 80
        protocol: TCP
        targetPort: 80
      selector:
        app.kubernetes.io/name: MyApp
    

在单栈和双栈之间切换服务

服务可以从单栈更改为双栈,也可以从双栈更改为单栈。

  1. 要将服务从单栈更改为双栈,根据需要将 .spec.ipFamilyPolicySingleStack 改为 PreferDualStackRequireDualStack。 当你将此服务从单栈更改为双栈时,Kubernetes 将分配缺失的地址族, 以便现在该服务具有 IPv4 和 IPv6 地址。 编辑服务规约将 .spec.ipFamilyPolicySingleStack 改为 PreferDualStack

    之前:

    spec:
      ipFamilyPolicy: SingleStack
    

    之后:

    spec:
      ipFamilyPolicy: PreferDualStack
    
  1. 要将服务从双栈更改为单栈,请将 .spec.ipFamilyPolicyPreferDualStackRequireDualStack 改为 SingleStack。 当你将此服务从双栈更改为单栈时,Kubernetes 只保留 .spec.ClusterIPs 数组中的第一个元素,并设置 .spec.ClusterIP 为那个 IP 地址, 并设置 .spec.ipFamilies.spec.ClusterIPs 地址族。

无选择算符的无头服务

对于不带选择算符的无头服务, 若没有显式设置 .spec.ipFamilyPolicy,则 .spec.ipFamilyPolicy 字段默认设置为 RequireDualStack

LoadBalancer 类型服务

要为你的服务提供双栈负载均衡器:

  • .spec.type 字段设置为 LoadBalancer
  • .spec.ipFamilyPolicy 字段设置为 PreferDualStack 或者 RequireDualStack

出站流量

如果你要启用出站流量,以便使用非公开路由 IPv6 地址的 Pod 到达集群外地址 (例如公网),则需要通过透明代理或 IP 伪装等机制使 Pod 使用公共路由的 IPv6 地址。 ip-masq-agent项目 支持在双栈集群上进行 IP 伪装。

Windows 支持

Windows 上的 Kubernetes 不支持单栈“仅 IPv6” 网络。 然而, 对于 Pod 和节点而言,仅支持单栈形式服务的双栈 IPv4/IPv6 网络是被支持的。

你可以使用 l2bridge 网络来实现 IPv4/IPv6 双栈联网。

关于 Windows 的不同网络模式,你可以进一步阅读 Windows 上的网络

接下来

11 - 使用拓扑键实现拓扑感知的流量路由

特性状态: Kubernetes v1.21 [deprecated]

服务拓扑(Service Topology)可以让一个服务基于集群的 Node 拓扑进行流量路由。 例如,一个服务可以指定流量是被优先路由到一个和客户端在同一个 Node 或者在同一可用区域的端点。

拓扑感知的流量路由

默认情况下,发往 ClusterIP 或者 NodePort 服务的流量可能会被路由到服务的任一后端的地址。 Kubernetes 1.7 允许将“外部”流量路由到接收到流量的节点上的 Pod。对于 ClusterIP 服务,无法完成同节点优先的路由,你也无法配置集群优选路由到同一可用区中的端点。 通过在 Service 上配置 topologyKeys,你可以基于来源节点和目标节点的标签来定义流量路由策略。

通过对源和目的之间的标签匹配,作为集群操作者的你可以根据节点间彼此“较近”和“较远” 来定义节点集合。你可以基于符合自身需求的任何度量值来定义标签。 例如,在公有云上,你可能更偏向于把流量控制在同一区内,因为区间流量是有费用成本的, 而区内流量则没有。 其它常见需求还包括把流量路由到由 DaemonSet 管理的本地 Pod 上,或者把将流量转发到连接在同一机架交换机的节点上,以获得低延时。

使用服务拓扑

如果集群启用了 ServiceTopology 特性门控, 你就可以在 Service 规约中设定 topologyKeys 字段,从而控制其流量路由。 此字段是 Node 标签的优先顺序字段,将用于在访问这个 Service 时对端点进行排序。 流量会被定向到第一个标签值和源 Node 标签值相匹配的 Node。 如果这个 Service 没有匹配的后端 Node,那么第二个标签会被使用做匹配, 以此类推,直到没有标签。

如果没有匹配到,流量会被拒绝,就如同这个 Service 根本没有后端。 换言之,系统根据可用后端的第一个拓扑键来选择端点。 如果这个字段被配置了而没有后端可以匹配客户端拓扑,那么这个 Service 对那个客户端是没有后端的,链接应该是失败的。 这个字段配置为 "*" 意味着任意拓扑。 这个通配符值如果使用了,那么只有作为配置值列表中的最后一个才有用。

如果 topologyKeys 没有指定或者为空,就没有启用这个拓扑约束。

一个集群中,其 Node 的标签被打为其主机名,区域名和地区名。 那么就可以设置 ServicetopologyKeys 的值,像下面的做法一样定向流量了。

  • 只定向到同一个 Node 上的端点,Node 上没有端点存在时就失败: 配置 ["kubernetes.io/hostname"]
  • 偏向定向到同一个 Node 上的端点,回退同一区域的端点上,然后是同一地区, 其它情况下就失败:配置 ["kubernetes.io/hostname", "topology.kubernetes.io/zone", "topology.kubernetes.io/region"]。 这或许很有用,例如,数据局部性很重要的情况下。
  • 偏向于同一区域,但如果此区域中没有可用的终结点,则回退到任何可用的终结点: 配置 ["topology.kubernetes.io/zone", "*"]

约束条件

  • 服务拓扑和 externalTrafficPolicy=Local 是不兼容的,所以 Service 不能同时使用这两种特性。 但是在同一个集群的不同 Service 上是可以分别使用这两种特性的,只要不在同一个 Service 上就可以。

  • 有效的拓扑键目前只有:kubernetes.io/hostnametopology.kubernetes.io/zonetopology.kubernetes.io/region,但是未来会推广到其它的 Node 标签。

  • 拓扑键必须是有效的标签,并且最多指定16个。

  • 通配符:"*",如果要用,则必须是拓扑键值的最后一个值。

示例

以下是使用服务拓扑功能的常见示例。

仅节点本地端点

仅路由到节点本地端点的一种服务。如果节点上不存在端点,流量则被丢弃:

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app: my-app
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376
  topologyKeys:
    - "kubernetes.io/hostname"

首选节点本地端点

首选节点本地端点,如果节点本地端点不存在,则回退到集群范围端点的一种服务:

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app: my-app
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376
  topologyKeys:
    - "kubernetes.io/hostname"
    - "*"

仅地域或区域端点

首选地域端点而不是区域端点的一种服务。 如果以上两种范围内均不存在端点, 流量则被丢弃。

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app: my-app
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376
  topologyKeys:
    - "topology.kubernetes.io/zone"
    - "topology.kubernetes.io/region"

优先选择节点本地端点、地域端点,然后是区域端点

优先选择节点本地端点,地域端点,然后是区域端点,最后才是集群范围端点的一种服务。

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app: my-app
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376
  topologyKeys:
    - "kubernetes.io/hostname"
    - "topology.kubernetes.io/zone"
    - "topology.kubernetes.io/region"
    - "*"

接下来