Information in this document may be out of date
This document has an older update date than the original, so the information it contains may be out of date. If you're able to read English, see the English version for the most up-to-date information: Horizontal Pod Autoscaling
HorizontalPodAutoscaler
HorizontalPodAutoscaler secara otomatis akan memperbanyak jumlah Pod di dalam ReplicationController, Deployment, ReplicaSet ataupun StatefulSet berdasarkan hasil observasi penggunaan CPU(atau, dengan metrik khusus, pada beberapa aplikasi yang menyediakan metrik). Perlu dicatat bahwa HorizontalPodAutoscale tidak dapat diterapkan pada objek yang tidak dapat diperbanyak, seperti DeamonSets.
HorizontalPodAutoscaler diimplementasikan sebagai Kubernetes API resource dan sebuah controller. Resource tersebut akan menentukan perilaku dari controller-nya. Kontroler akan mengubah jumlah replika pada ReplicationController atau pada Deployment untuk menyesuaikan dengan hasil observasi rata-rata penggunaan CPU sesuai dengan yang ditentukan oleh pengguna.
Bagaimana cara kerja HorizontalPodAutoscaler?
HorizontalPodAutoscaler diimplementasikan sebagai sebuah loop kontrol, yang secara
berkala dikontrol oleh flag --horizontal-pod-autoscaler-sync-period
pada controller manager
(dengan nilai bawaan 15 detik).
Dalam setiap periode, controller manager melakukan kueri penggunaan sumber daya dan membandingkan dengan metrik yang dispesifikasikan pada HorizontalPodAutoscaler. Controller manager mendapat metrik dari sumber daya metrik API (untuk metrik per Pod) atau dari API metrik khusus (untuk semua metrik lainnya).
Untuk metrik per Pod (seperti CPU), controller mengambil metrik dari sumber daya metrik API untuk setiap Pod yang ditargetkan oleh HorizontalPodAutoscaler. Kemudian, jika nilai target penggunaan ditentukan, maka controller akan menghitung nilai penggunaan sebagai persentasi dari pengguaan sumber daya dari Container pada masing-masing Pod. Jika target nilai mentah (raw value) ditentukan, maka nilai metrik mentah (raw metric) akan digunakan secara langsung. Controller kemudian mengambil nilai rata-rata penggunaan atau nilai mentah (tergantung dengan tipe target yang ditentukan) dari semua Pod yang ditargetkan dan menghasilkan perbandingan yang digunakan untuk menentukan jumlah replika yang akan diperbanyak.
Perlu dicatat bahwa jika beberapa Container pada Pod tidak memiliki nilai resource request, penggunaan CPU pada Pod tersebut tidak akan ditentukan dan autoscaler tidak akan melakukan tindakan apapun untuk metrik tersebut. Perhatikan pada bagian detail algoritma di bawah ini untuk informasi lebih lanjut mengenai cara kerja algoritma autoscale.
Untuk metrik khusus per Pod, controller bekerja sama seperti sumber daya metrik per Pod, kecuali Pod bekerja dengan nilai mentah, bukan dengan nilai utilisasi (utilization values).
Untuk objek metrik dan metrik eksternal, sebuah metrik diambil, dimana metrik tersebut menggambarkan objek tersebut. Metrik ini dibandingkan dengan nilai target untuk menghasilkan perbandingan seperti di atas. Pada API
autoscaling/v2beta2
, nilai perbandingan dapat secara opsional dibagi dengan jumlah Pod sebelum perbandingan dibuat.
Pada normalnya, HorizontalPodAutoscaler mengambil metrik dari serangkaian API yang sudah diagregat
(custom.metric.k8s.io
, dan external.metrics.k8s.io
). API metrics.k8s.io
biasanya disediakan oleh
metric-server, dimana metric-server dijalankan secara terpisah. Perhatikan
metrics-server sebagai petunjuk.
HorizontalPodAutoscaler juga mengambil metrik dari Heapster secara langsung.
Catatan:
Kubernetes v1.11 [deprecated]
Pengambian metrik dari Heapster tidak didukung lagi pada Kubernetes versi 1.11.
Perhatikan Dukungan untuk API metrik untuk lebih detail.
Autoscaler mengkases controller yang dapat diperbanyak (seperti ReplicationController, Deployment, dan ReplicaSet) dengan menggunakan scale sub-resource. Untuk lebih detail mengenai scale sub-resource dapat ditemukan di sini.
Detail Algoritma
Dari sudut pandang paling sederhana, controller HorizontalPodAutoscaler mengoperasikan perbandingan metrik yang diinginkan dengan kedaan metrik sekarang.
desiredReplicas = ceil[currentReplicas * ( currentMetricValue / desiredMetricValue )]
Sebagai contoh, jika nilai metrik sekarang adalah 200m
dan nilai metrik yang
diinginkan adalah 100m
, jumlah replika akan ditambah dua kali lipat,
karena 200.0 / 100.0 == 2.0
. Jika nilai metrik sekarang adalah 50m
,
maka jumlah replika akan dikurangi setengah, karena 50.0 / 100.0 == 0.5
.
Kita tetap memperbanyak replika (scale) jika nilai perbandingan mendekati 1.0 (dalam toleransi yang
dapat dikonfigurasi secata global, dari flag --horizontal-pod-autoscaler-tolerance
dengan nilai bawaan 0.1.
Ketika targetAverageValue
(nilai target rata-rata) atau targetAverageUtilization
(target penggunaan rata-rata) ditentukan, currentMetricValue
(nilai metrik sekaraang)
dihitung dengan mengambil rata-rata dari metrik dari semua Pod yang ditargetkan oleh
HorizontalPodAutoscaler. Sebelum mengecek toleransi dan menentukan nilai akhir,
kita mengambil kesiapan Pod dan metrik yang hilang sebagai pertimbangan.
Semua Pod yang memiliki waktu penghapusan (Pod dalam proses penutupan) dan semua Pod yang mengalami kegagalan akan dibuang.
Jika ada metrik yang hilang dari Pod, maka Pod akan dievaluasi nanti. Pod dengan nilai metrik yang hilang akan digunakan untuk menyesuaikan jumlah akhir Pod yang akan diperbanyak atau dikurangi.
Ketika scaling dilakukan karena CPU, jika terdapat Pod yang akan siap (dengan kata lain Pod tersebut sedang dalam tahap inisialisasi) atau metrik terakhir dari Pod adalah metrik sebelum Pod dalam keadaan siap, maka Pod tersebut juga akan dievaluasi nantinya.
Akibat keterbatasan teknis, controller HorizontalPodAutoscaler tidak dapat
menentukan dengan tepat kapan pertama kali Pod akan dalam keadaan siap
ketika menentukan apakah metrik CPU tertentu perlu dibuang. Sebaliknya,
HorizontalPodAutoscaler mempertimbangkan sebuah Pod "tidak dalam keadaan siap"
jika Pod tersebut dalam keadaan tidak siap dan dalam transisi ke status tidak
siap dalam waktu singkat, rentang waktu dapat dikonfigurasi, sejak Pod tersebut dijalankan.
Rentang waktu tersebut dapat dikonfigurasi dengan flag --horizontal-pod-autoscaler-initial-readiness-delay
dan waktu bawaannya adalah 30 detik. Ketika suatu Pod sudah dalam keadaan siap,
Pod tersebut mempertimbangkan untuk siap menjadi yang pertama jika itu terjadi dalam
waktu yang lebih lama, rentang waktu dapat dikonfigurasi, sejak Pod tersebut dijalankan.
Rentang waktu tersebut dapat dikonfigurasi dengan flag --horizontal-pod-autoscaler-cpu-initialization-period
dan nilai bawaannya adalah 5 menit.
Skala perbandingan dasar currentMetricValue / desiredMetricValue
dihitung menggunakan Pod yang tersisa yang belum disisihkan atau dibuang dari
kondisi di atas.
Jika terdapat metrik yang hilang, kita menghitung ulang rata-rata dengan lebih konservatif, dengan asumsi Pod mengkonsumsi 100% dari nilai yang diharapkan jika jumlahnya dikurangi (scale down) dan 0% jika jumlahnya diperbanyak (scale up). Ini akan mengurangi besarnya kemungkinan untuk scale.
Selanjutnya, jika terdapat Pod dalam keadaan tidak siap, dan kita akan memperbanyak replikas (scale up) tanpa memperhitungkan metrik yang hilang atau Pod yang tidak dalam keadaan siap, kita secara konservatif mengasumsikan Pod yang tidak dalam keadaan siap mengkonsumsi 0% dari metrik yang diharapkan, akhirnya meredam jumlah replika yang diperbanyak (scale up).
Seteleh memperhitungkan Pod yang tidak dalam keadaan siap dan metrik yang hilang, kita menghitung ulang menggunakan perbandingan. Jika perbandingan yang baru membalikkan arah scale-nya atau masih di dalam toleransi, kita akan melakukan scale dengan tepat. Jika tidak, kita menggunakan perbandingan yang baru untuk memperbanyak atau mengurangi jumlah replika.
Perlu dicatat bahwa nilai asli untuk rata-rata penggunaan dilaporkan kembali melalui status HorizontalPodAutoscaler, tanpa memperhitungkan Pod yang tidak dalam keadaan siap atau metrik yang hilang, bahkan ketika perbandingan yang baru digunakan.
Jika beberapa metrik ditentukan pada sebuah HorizontalPodAutoscaler, perhitungan
dilakukan untuk setiap metrik dan nilai replika terbesar yang diharapkan akan dipilih.
Jika terdapat metrik yang tidak dapat diubah menjadi jumlah replika yang diharapkan
(contohnya terdapat kesalahan ketika mengambil metrik dari API metrik) dan pengurangan replika
disarankan dari metrik yang dapat diambil, maka scaling akan diabaikan. Ini berarti
HorizontalPodAutoscaler masih mampu untuk memperbanyak replika jika satu atau lebih metrik
memberikan sebuah desiredReplicas
lebih besar dari nilai yang sekarang.
Pada akhirnya, sebelum HorizontalPodAutoscaler memperbanyak target, rekomendasi scaling akan
dicatat. Controller mempertimbangkan semua rekomendasi dalam rentang waktu yang dapat
dikonfigurasi untuk memilih rekomendasi tertinggi. Nilai ini dapat dikonfigurasi menggunakan
flag --horizontal-pod-autoscaler-downscale-stabilization
, dengan nilai bawaan
5 menit. Ini berarti pengurangan replika akan terjadi secara bertahap, untuk mengurangi dampak dari
perubahan nilai metrik yang cepat.
Objek API
HorizontalPodAutoscaler adalah sebuah API dalam grup autoscaling
pada Kubernetes.
Versi stabil, yang hanya mendukung untuk autoscale CPU, dapat ditemukan pada versi
API autoscaling/v1
.
Versi beta, yang mendukung untuk scaling berdasarkan memori dan metrik khusus,
dapat ditemukan pada autoscaling/v2beta2
. Field yang baru diperkenalkan pada
autoscaling/v2beta2
adalah preserved sebagai anotasi ketika menggunakan autoscaling/v1
.
Ketika kamu membuat sebuah HorizontalPodAutoscaler, pastikan nama yang ditentukan adalah valid nama subdomain DNS. Untuk lebih detail tentang objek API ini dapat ditemukan di Objek HorizontalPodAutoscaler.
Dukungan untuk HorizontalPodAutoscaler pada kubectl
Seperti sumber daya API lainnya, HorizontalPodAutoscaler didukung secara bawaan oleh kubectl
.
Kita dapat membuat autoscaler yang baru dengan menggunakan perintah kubectl create
.
Kita dapat melihat daftar autoscaler dengan perintah kubectl get hpa
dan melihat deskripsi
detailnya dengan perintah kubectl describe hpa
. Akhirnya, kita dapat menghapus autoscaler
meggunakan perintah kubectl delete hpa
.
Sebagai tambahan, terdapat sebuah perintah khusus kubectl autoscaler
untuk mempermudah pembuatan
HorizontalPodAutoscaler. Sebagai contoh, mengeksekusi
kubectl autoscaler rs foo --min=2 --max=5 --cpu-percent=80
akan membuat sebuah autoscaler untuk
ReplicaSet foo, dengan target pengguaan CPU 80%
dan jumlah replika antara 2 sampai dengan 5.
Dokumentasi lebih detail tentang kubectl autoscaler
dapat ditemukan di
sini.
Autoscaling ketika Rolling Update
Saat ini, dimungkinkan untuk melakukan rolling update menggunakan objek Deployment, yang akan mengatur ReplicaSet untuk kamu. HorizontalPodAutoscaler hanya mendukung pendekatan terakhir: HorizontalPodAutoscaler terikat dengan objek Deployment, yang mengatur seberapa besar dari objek Deployment tersebut, dan Deployment bertugas untuk mengatur besar dari ReplicaSet.
HorizontalPodAutoscaler tidak bekerja dengan rolling update yang menggunakan manipulasi pada ReplicationContoller secara langsung, dengan kata lain kamu tidak bisa mengikat HorizontalPodAutoscaler dengan ReplicationController dan melakukan rolling update. Alasan HorizontalPodAutoscaler tidak bekerja ketika rolling update membuat ReplicationController yang baru adalah HorizontalPodAutoscaler tidak akan terikat dengan ReplicationController yang baru tersebut.
Dukungan untuk Cooldown / Penundaan
Ketika mengolah scaleing dari sebuah grup replika menggunakan HorizonalPodAutoscaler, jumlah replika dimungkinkan tetap berubah secara sering disebabkan oleh perubahan dinamis dari metrik yang dievaluasi. Hal ini sering disebut dengan thrashing.
Mulai dari versi 1.6, operator klaster dapat mengatasi masalah ini dengan mengatur
konfigurasi HorizontalPodAutoscaler global sebagai flag kube-controller-manager
.
Mulai dari versi 1.12, sebuah algoritma pembaruan baru menghilangkan kebutuhan terhadap penundaan memperbanyak replika (upscale).
--horizontal-pod-autoscaler-downscale-stabilization
: Nilai untuk opsi ini adalah sebuah durasi yang menentukan berapa lama autoscaler menunggu sebelum operasi pengurangan replika (downscale) yang lain dilakukan seteleh operasi sekarang selesai. Nilai bawaannya adalah 5 menit (5m0s
).
Catatan:
Ketika mengubah nilai paramater ini, sebuah operator klaster sadar akan kemungkinan konsekuensi. Jika waktu penundaan diset terlalu lama, kemungkinan akan membuat HorizontalPodAutoscaler tidak responsif terharap perubahan beban kerja. Namun, jika waktu penundaan diset terlalu cepat, kemungkinan replikasi akan trashing seperti biasanya.Dukungan untuk Beberapa Metrik
Kubernetes versi 1.6 menambah dukungan untuk scaling berdasarkan beberapa metrik.
Kamu dapat menggunakan API versi autoscaling/v2beta2
untuk menentukan beberapa metrik
yang akan digunakan HorizontalPodAutoscaler untuk menambah atau mengurangi jumlah replika.
Kemudian, controller HorizontalPodAutoscaler akan mengevaluasi setiap metrik dan menyarankan jenis
scaling yang baru berdasarkan metrik tersebut. Jumlah replika terbanyak akan digunakan untuk scale
yang baru.
Dukungan untuk Metrik Khusus
Catatan:
Kubernetes versi 1.2 menambah dukungan alpha untuk melakukan scaling berdasarkan metrik yang spesifik dengan aplikasi menggunakan anotasi khusus. Dukungan untuk anotasi ini dihilangkan pada Kubernetes versi 1.6 untuk mendukung API autoscaling yang baru. Selama cara lama untuk mendapatkan metrik khusus masih tersedia, metrik ini tidak akan tersedia untuk digunakan oleh HorizontalPodAutoscaler dan anotasi sebelumnya untuk menentukan metrik khusus untuk scaling tidak lagi digunakan oleh controller HorizontalPodAutscaler.Kubernetes versi 1.6 menambah dukungan untuk menggunakan metrik khusus pada HorizontalPodAutoscaler.
Kamu dapat menambahkan metrik khusus untuk HorizontalPodAutoscaler pada API versi autoscaling/v2beta2
.
Kubernetes kemudian memanggil API metrik khusus untuk mengambil nilai dari metrik khusus.
Lihat Dukungan untuk API metrik untuk kubutuhannya.
Dukungan untuk API metrik
Secara standar, controller HorizontalPodAutoscaler mengambil metrik dari beberapa API. Untuk dapat mengakses API ini, administrator klaster harus memastikan bahwa:
API Later Pengumpulan diaktifkan.
API berikut ini terdaftar:
Untuk metrik sumber daya, ini adalah API
metrics.k8s.io
, pada umumnya disediakan oleh metrics-server. API tersebut dapat diaktifkan sebagai addon atau tambahan pada klaster.Untuk metrik khusus, ini adalah API
custom.metrics.k8s.io
. API ini disediakan oleh API adaptor server yang disediakan oleh vendor yang memberi solusi untuk metrik. Cek dengan pipeline metrikmu atau daftar solusi yang sudah diketahui. Jika kamu ingin membuat sendiri, perhatikan boilerplate berikut untuk memulai.Untuk metrik eksternal, ini adalah API
external.metrics.k8s.io
. API ini mungkin disediakan oleh penyedia metrik khusus diatas.
Nilai dari
--horizontal-pod-autoscaler-use-rest-clients
adalahtrue
atau tidak ada. Ubah nilai tersebut menjadifalse
untuk mengubah ke autoscaling berdasarkan Heapster, dimana ini sudah tidak didukung lagi.
Untuk informasi lebih lanjut mengenai metrik-metrik ini dan bagaimana perbedaan setiap metrik, perhatikan proposal desain untuk HPA V2, custom.metrics.k8s.io dan external.metrics.k8s.io.
Untuk contoh bagaimana menggunakan metrik-metrik ini, perhatikan panduan penggunaan metrik khusus dan panduan penggunaan metrik eksternal.
Dukungan untuk Perilaku Scaling yang dapat Dikonfigurasi
Mulai dari versi v1.18, API v2beta2
mengizinkan perilaku scaling dapat
dikonfigurasi melalui field behavior
pada HorizontalPodAutoscaler. Perilaku scaling up dan scaling down
ditentukan terpisah pada field slaceUp
dan field scaleDown
, dibawah dari field behavior
.
Sebuah stabilisator dapat ditentukan untuk kedua arah scale untuk mencegah perubahan replika yang terlalu
berbeda pada target scaling. Menentukan scaling policies akan mengontrol perubahan replika
ketika scaling.
Scaling Policies
Satu atau lebih scaling policies dapat ditentukan pada field behavior
. Ketika beberapa
policies ditentukan, policy yang mengizinkan scale terbesar akan dipilih secara default.
Contoh berikut menunjukkan perilaku ketika mengurangi replika:
behavior:
scaleDown:
policies:
- type: Pods
value: 4
periodSeconds: 60
- type: Percent
value: 10
periodSeconds: 60
Ketika jumlah Pod lebih besar dari 40, policy kedua akan digunakan untuk scaling down. Misalnya, jika terdapat 80 replika dan target sudah di scale down ke 10 replika, 8 replika akan dikurangi pada tahapan pertama. Pada iterasi berikutnya, ketika jumlah replika adalah 72, 10% dari Pod adalah 7.2 tetapi akan dibulatkan menjadi 8. Dalam setiap iterasi pada controller autoscaler jumlah Pod yang akan diubah akan dihitung ulang berdarkan jumlah replika sekarang. Ketika jumlah replika dibawah 40, policy pertama (Pods) akan digunakan dan 4 replika akan dikurangi dalam satu waktu.
periodSeconds
menunjukkan berapa lama waktu pada iterasi terkhir untuk menunjukkan policy
mana yang akan digunakan. Policy pertama mengizinkan maksimal 4 replika di scale down
dalam satu menit. Policy kedua mengixinkan maksimal 10% dari total replika sekarang di
scale down dalam satu menit.
Pemilihan policy dapat diubah dengan menentukannya pada field selectPolicy
untuk sebuah
arah scale (baik scale up ataupun scale down). Dengan menentukan nilai Min
,
HorizontalPodAutoscaler akan memilih policy yang mengizinkan pergantian replika paling sedikit.
Dengan menuntukan nilai Disable
, akan menghentikan scaling pada arah scale tersebut.
Jendela Stabilisasi
Jendela stabilisasi digunakan untuk membatasi perubahan replika yang terlalu drastis ketika
metrik yang digunakan untuk scaling tetap berubah-ubah. Jendela stabilisasi digunakan oleh
algoritma autoscaling untuk memperhitungkan jumlah replika yang diharapkan dari scaling
sebelumnya untuk mencengah *scaling. Berikut adalah contoh penggunaan jendela stabilisasi
pada scaleDown
.
scaleDown:
stabilizationWindowSeconds: 300
Ketika metrik menandakan bahwa replika pada target akan dikurangi, algoritma akan memperhatikan jumlah replika yang diharapkan sebelumnya dan menggunakan nilai terbesar dari interval yang ditentukan. Pada contoh diatas, semua jumlah replika yang diharapkan pada 5 menit yang lalu akan dipertimbangkan.
Perilaku Standar
Untuk menggunakan scaling khusus, tidak semua field perlu ditentukan. Hanta nilai yang perlu diubah saja yang ditentukan. Nilai khusus ini akan digabungkan dengan nilai standar. Berikut adalah nilai standar perilaku pada algoritma yang digunakan HorizontalPodAutoscaler.
behavior:
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Percent
value: 100
periodSeconds: 15
scaleUp:
stabilizationWindowSeconds: 0
policies:
- type: Percent
value: 100
periodSeconds: 15
- type: Pods
value: 4
periodSeconds: 15
selectPolicy: Max
Untuk scaleDown
, nilai dari jendela stabilisasi adalah 300 detik (atau nilai dari
flag --horizontal-pod-autoscaler-downscale-stabilization
jika ditentukan). Hanya terdapat
satu policy, yaitu mengizinkan menghapus 100% dari replika yang berjalan,
artinya target replikasi di scale ke jumlah replika minimum. Untuk scaleUp
, tidak terdapat
jendela stabilisasi. Jika metrik menunjukkan bahwa replika pada target perlu diperbanyak, maka replika akan
diperbanyak di secara langsung. Untuk scaleUp
terdapat dua policy, yaitu empat Pod atau 100% dari
replika yang berjalan akan ditambahkan setiap 15 detik sampai HorizontalPodAutoscaler
dalam keadaan stabil.
Contoh: Mengubah Jendela Stabiliasi pada field scaleDown
Untuk membuat jendela stabilisai untuk pengurangan replika selama satu menit, perilaku berikut ditambahkan pada HorizontalPodAutoscaler.
behavior:
scaleDown:
stabilizationWindowSeconds: 60
Contoh: Membatasi nilai scale down
Untuk membatasi total berapa Pod yang akan dihapus, 10% setiap menut, perilaku berikut ditambahkan pada HorizontalPodAutoscaler.
behavior:
scaleDown:
policies:
- type: Percent
value: 10
periodSeconds: 60
Untuk mengizinkan penghapusan 5 Pod terakhir, policy lain dapat ditambahkan.
behavior:
scaleDown:
policies:
- type: Percent
value: 10
periodSeconds: 60
- type: Pods
value: 5
periodSeconds: 60
selectPolicy: Max
Contoh: menonakfitkan scale down
Nilai Disable
pada selectPolicy
akan menonaktifkan scaling pada arah yang
ditentukan. Untuk mencegah pengurangan replika dapat menggunakan policy berikut.
behavior:
scaleDown:
selectPolicy: Disabled
Selanjutnya
- Dokumentasi desain Horizontal Pod Autoscaling.
- Perintah kubectl autoscale kubectl autoscale.
- Contoh penggunaan HorizontalPodAutoscaler.